Skip to main content
Log in

Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Rechargeable Li batteries as electrochemical energy storage and conversion devices are continuously changing human life. In order to meet the increasing demand for energy and power density, it is essential and urgent to exploit the electrode materials with high capacity and fast charge transfer (for Li-ion and Li-S batteries) and electrocatalysts with high activity (for rechargeable Li-O2 batteries). The high capacity is attributed to high electron transfer number and low molecular weight of the electrode materials. Combined with proper nanostructure design, the electronic transfer and ionic conductivity will be improved. This review summarizes recent efforts to apply electrode materials for Li-ion batteries with multi-electron reaction, Li-S batteries, and efficient electrocatalysts for Li-O2 batteries. The methods to enhance the cycling and rate performance have been discussed in detail. Advanced rechargeable Li batteries with multi-electron reaction will become the research emphasis in the future.

摘要

作为电化学能源存储与转换的重要设备, 锂二次电池不断地改善着人类的生活. 为了满足人们对能量密度和功率密度不断增长的需求, 急需为锂离子电池和锂硫二次电池开发高容量、 可快速充放的电极材料, 寻找用于可充式锂空气电池的高活性的催化剂. 高容量要求电极材料具有高的电荷转移数和小的分子质量, 快速的电荷转移要求材料离子传输距离短、 反应活性位点多, 而设计制备纳米结构材料是改善电荷转移和离子电导率的有效手段. 本综述总结了最近在锂离子电池、 锂硫二次电池和可充式锂空气电池中多电子反应的研究进展, 详细地讨论了提高电池倍率和循环性能的方法. 可发生多电子反应的先进的锂电池将成为未来的研究重点.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928–935

    Article  Google Scholar 

  2. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res, 2012, 46: 1053–1061

    Article  Google Scholar 

  3. Cheng F, Liang J, Tao Z, Chen J. Functional materials for rechargeable batteries. Adv Mater, 2011, 23: 1695–1715

    Article  Google Scholar 

  4. Chen J, Cheng F. Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res, 2009, 42: 713–723

    Article  Google Scholar 

  5. Zhang K, Han X, Hu Z, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev, doi: 10.1039/C4CS00218K

  6. Tao Z, Chen J. Secondary battery systems for energy storage in smart grids. Chin Sci Bull, 2012, 57: 2545–2560

    Article  Google Scholar 

  7. Song HK, Lee KT, Kim MG, Nazar LF, Cho J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater, 2010, 20: 3818–3834

    Article  Google Scholar 

  8. Zhou Z, Tian N, Li J, Broadwell I, Sun S. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev, 2011, 40: 4167–4185

    Article  Google Scholar 

  9. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  Google Scholar 

  10. Wang Y, Li H, He P, Hosono E, Zhou H. Nano active materials for lithium-ion batteries. Nanoscale, 2010, 2: 1294–1305

    Article  Google Scholar 

  11. Liu J, Wen Y, Wang Y, et al. Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater, 2014, 26: 6025–6030

    Article  Google Scholar 

  12. Zhang K, Zhao Q, Tao Z, Chen J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res, 2013, 6: 38–46

    Article  Google Scholar 

  13. Duan W, Hu Z, Zhang K, et al. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5: 6485–6490

    Article  Google Scholar 

  14. Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci, 2011, 4: 3223–3242

    Article  Google Scholar 

  15. Gao H, Hu Z, Zhang K, Cheng F, Chen J. Intergrown Li2FeSiO4. LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem Commun, 2013, 49: 3040–3042

    Article  Google Scholar 

  16. Hu Z, Zhang K, Gao H, et al. Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries. J Mater Chem A, 2013, 1: 12650–12656

    Article  Google Scholar 

  17. Zhang K, Wang L, Hu Z, Cheng F, Chen J. Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci Rep, 2014, 4: 6467

    Article  Google Scholar 

  18. Zhu Z, Wang S, Du J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett, 2013, 14: 153–157

    Article  Google Scholar 

  19. Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotech, 2012, 7: 310–315

    Article  Google Scholar 

  20. Ma H, Cheng F, Chen J, et al. Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater, 2007, 19: 4067–4070

    Article  Google Scholar 

  21. Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed, 2012, 51: 9034–9037

    Article  Google Scholar 

  22. Chen J, Xu L, Li W, Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–586

    Article  Google Scholar 

  23. Xu X, Cao R, Jeong S, Cho J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett, 2012, 12: 4988–4991

    Article  Google Scholar 

  24. Zhu Z, Cheng F, Chen J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A, 2013, 1: 9484–9490

    Article  Google Scholar 

  25. Wang S, Wang L, Zhang K, et al. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett, 2013, 13: 4404–4409

    Article  Google Scholar 

  26. Liang Y, Zhang P, Chen J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem Sci, 2013, 4: 1330–1337

    Article  Google Scholar 

  27. Huang W, Zhu Z, Wang L, et al. Quasi-solid-state rechargeable lithiumion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew Chem Int Ed, 2013, 52: 9162–9166

    Article  Google Scholar 

  28. Hu X, Cheng F, Han X, Zhang T, Chen J. Oxygen bubble-templated hierarchical porous ɛ-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, doi: 10.1002/smll.201401790

  29. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun, 2005, 7: 156–160

    Article  Google Scholar 

  30. Boulineau A, Sirisopanaporn C, Dominko R, et al. Polymorphism and structural defects in Li2FeSiO4. Dalton Trans, 2010, 39: 6310–6316

    Article  Google Scholar 

  31. Sirisopanaporn C, Masquelier C, Bruce PG, Armstrong AR, Dominko R. Dependence of Li2FeSiO4 electrochemistry on structure. J Am Chem Soc, 2010, 133: 1263–1265

    Article  Google Scholar 

  32. Zheng Z, Wang Y, Zhang A, et al. Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources, 2012, 198: 229–235

    Article  Google Scholar 

  33. Gao H, Hu Z, Zhang K, et al. Hydrothermal synthesis of spindlelike Li2FeSiO4-C composite as cathode materials for lithium-ion batteries. J Energy Chem, 2014, 23: 274–281

    Article  Google Scholar 

  34. Zhu H, Wu X, Zan L, Zhang Y. Three-dimensional macroporous graphene-Li2FeSiO4 composite as cathode material for lithium-ion batteries with superior electrochemical performances. ACS Appl Mater Interfaces, 2014, 6: 11724–11733

    Article  Google Scholar 

  35. Gao H, Hu Z, Yang J, Chen J. Li2−x Fe1−x AlxSiO4/C nanocomposites cathodes for lithium-ion batteries. Energy Technol, 2014, 2: 355–361

    Article  Google Scholar 

  36. Nyten A, Kamali S, Haggstrom L, Gustafsson T, Thomas JO. The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem, 2006, 16: 2266–2272

    Article  Google Scholar 

  37. Yi J, Hou M, Bao H, et al. In-situ generation of Li 2 FeSiO 4 /C nanocomposite as cathode material for lithium ion battery. Electrochim Acta, 2014, 133: 564–569

    Article  Google Scholar 

  38. Jiang X, Xu H, Liu J, et al. Hierarchical mesoporous Li2Mn0.5Fe0.5SiO4 and Li2Mn0.5Fe0.5SiO4/C assembled by nanoparticles or nanoplates as a cathode material for lithium-ion batteries. Nano Energy, 2014, 7: 1–9

    Article  Google Scholar 

  39. Fisher CAJ, Kuganathan N, Islam MS. Defect chemistry and lithiumion migration in polymorphs of the cathode material Li2Mn-SiO4. J Mater Chem A, 2013, 1: 4207–4214

    Article  Google Scholar 

  40. Duncan H, Kondamreddy A, Mercier PHJ, et al. Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries. Chem Mater, 2011, 23: 5446–5456

    Article  Google Scholar 

  41. Arroyo-deDompablo ME, Dominko R, Gallardo-Amores JM, et al. On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs. Chem Mater, 2008, 20: 5574–5584

    Article  Google Scholar 

  42. Zhang S, Lin Z, Ji L, et al. Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem, 2012, 22: 14661–14666

    Article  Google Scholar 

  43. Liu J, Xu H, Jiang X, Yang J, Qian Y. Facile solid-state synthesis of Li2MnSiO4/C nanocomposite as a superior cathode with a long cycle life. J Power Sources, 2013, 231: 39–43

    Article  Google Scholar 

  44. He G, Manthiram A. Nanostructured Li2MnSiO4/C cathodes with hierarchical macro-/mesoporosity for lithium-ion batteries. Adv Funct Mater, 2014, 24: 5277–5283

    Article  Google Scholar 

  45. Li Y, Gong Z, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources, 2007, 174: 528–532

    Article  Google Scholar 

  46. Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater, 2000, 12: 3240–3242

    Article  Google Scholar 

  47. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF. Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater, 2002, 14: 1525–1528

    Article  Google Scholar 

  48. Yin SC, Grondey H, Strobel P, Huang H, Nazar LF. Charge ordering in lithium vanadium phosphates: electrode materials for lithi um-ion batteries. J Am Chem Soc, 2003, 125: 326–327

    Article  Google Scholar 

  49. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. Electrochemical property: structure relationships in monoclinic Li3−yV2(PO4)3. J Am Chem Soc, 2003, 125: 10402–10411

    Article  Google Scholar 

  50. Li D, Tian M, Xie R, et al. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale, 2014, 6: 3302–3308

    Article  Google Scholar 

  51. Zhu X, Yan Z, Wu W, et al. Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: towards high-performance composite cathode for lithium ion batteries. Sci Rep, 2014, 4: 5768

    Article  Google Scholar 

  52. Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7: 414–429

    Article  Google Scholar 

  53. Ge M, Lu Y, Ercius P, et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett, 2013, 14: 261–268

    Article  Google Scholar 

  54. Kim H, Han B, Choo J, Cho J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed, 2008, 47: 10151–10154

    Article  Google Scholar 

  55. Ng SH, Wang J, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed, 2006, 45: 6896–6899

    Article  Google Scholar 

  56. Du F, Li B, Fu W, et al. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv Mater, 2014, 26: 6145–6150

    Article  Google Scholar 

  57. Xu Y, Zhu Y, Han F, Luo C, Wang C. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv Energy Mater, doi: 10.1002/aenm.201400753

  58. Li H, Bai H, Tao Z, Chen J. Si-Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries. J Power Sources, 2012, 217: 102–107

    Article  Google Scholar 

  59. Guo S, Li H, Bai H, Tao Z, Chen J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J Power Sources, 2014, 248: 1141–1148

    Article  Google Scholar 

  60. Hassoun J, Derrien G, Panero S, Scrosati B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater, 2008, 20: 3169–3175

    Article  Google Scholar 

  61. Zhang W, Hu J, Guo Y, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 2008, 20: 1160–1165

    Article  Google Scholar 

  62. Xu Y, Liu Q, Zhu Y, et al. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett, 2013, 13: 470–474

    Article  Google Scholar 

  63. Kim MG, Sim S, Cho J. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv Mater, 2010, 22: 5154–5158

    Article  Google Scholar 

  64. Ke F, Huang L, Jamison L, et al. Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycleability for lithium-ion batteries. Nano Energy, 2013, 2: 595–603

    Article  Google Scholar 

  65. Zhang N, Zhao Q, Han X, Yang J, Chen J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014, 6: 2827–2832

    Article  Google Scholar 

  66. Qian J, Qiao D, Ai X, Cao Y, Yang H. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem Commun, 2012, 48: 8931–8933

    Article  Google Scholar 

  67. Park CM, Sohn HJ. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater, 2007, 19: 2465–2468

    Article  Google Scholar 

  68. Cabana J, Monconduit L, Larcher D, Palacín MR. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170–E192

    Article  Google Scholar 

  69. Li WY, Xu LN, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater, 2005, 15: 851–857

    Article  Google Scholar 

  70. Sun Y, Hu X, Luo W, Xia F, Huang Y. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23: 2436–2444

    Article  Google Scholar 

  71. Chen S, Xin Y, Zhou Y, et al. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci, 2014, 7: 1924–1930

    Article  Google Scholar 

  72. Feckl JM, Fominykh K, Döblinger M, Fattakhova-Rohlfing D, Bein T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem Int Ed, 2012, 51: 7459–7463

    Article  Google Scholar 

  73. Yu L, Wu HB, Lou XW. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater, 2013, 25: 2296–2300

    Article  Google Scholar 

  74. Zhao L, Hu Y, Li H, Wang Z, Chen L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater, 2011, 23: 1385–1388

    Article  Google Scholar 

  75. Wang Y, Gu L, Guo Y, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc, 2012, 134: 7874–7879

    Article  Google Scholar 

  76. Liu J, Song K, van Aken PA, Maier J, Yu Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett, 2014, 14: 2597–2603

    Article  Google Scholar 

  77. Liang Y, Tao Z, Chen J. Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater, 2012, 2: 742–769

    Article  Google Scholar 

  78. Wang S, Tao Z, Chen J. Organic conjugated carbonyl compounds as electrode materials for lithium-ion batteries. Chin Sci Bull, 2013, 58: 3132–3139

    Article  Google Scholar 

  79. Liang Y, Zhang P, Yang S, Tao Z, Chen J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv Energy Mater, 2013, 3: 600–605

    Article  Google Scholar 

  80. Nokami T, Matsuo T, Inatomi Y, et al. Polymer-bound pyrene-4, 5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J Am Chem Soc, 2012, 134: 19694–19700

    Article  Google Scholar 

  81. Chen H, Armand M, Courty M, et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J Am Chem Soc, 2009, 131: 8984–8988

    Article  Google Scholar 

  82. Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater, 2009, 8: 120–125

    Article  Google Scholar 

  83. Zhu Z, Guo D, Tao Z, Chen J. Pillar[5]quinone as cathode material for quasi-solid-state rechargeable lithium batteries. Sci Sin Chim, 2014, 44: 1175–1180

    Article  Google Scholar 

  84. Li H, Duan W, Zhao Q, et al. 2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorg Chem Front, 2014, 1: 193–199

    Article  Google Scholar 

  85. Song Z, Xu T, Gordin ML, et al. Polymer-graphene nanocomposites as ultrafast-charge and-discharge cathodes for rechargeable lithium batteries. Nano Lett, 2012, 12: 2205–2211

    Article  Google Scholar 

  86. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbonsulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8: 500–506

    Article  Google Scholar 

  87. Gao J, Lowe MA, Kiya Y, Abruña HD. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C, 2011, 115: 25132–25137

    Article  Google Scholar 

  88. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev, 2013, 42: 3018–3032

    Article  Google Scholar 

  89. Yin Y, Xin S, Guo Y, Wan L. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 2013, 52: 13186–13200

    Article  Google Scholar 

  90. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed, 2011, 50: 5904–5908

    Article  Google Scholar 

  91. Yang X, Zhang L, Zhang F, Huang Y, Chen Y. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano, 2014, 8: 5208–5215

    Article  Google Scholar 

  92. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater, 2011, 23: 5641–5644

    Article  Google Scholar 

  93. Chen S, Huang X, Liu H, et al. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv Energy Mater, doi: 10.1002/aenm.201301761

  94. Yang Y, Yu G, Cha JJ, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano, 2011, 5: 9187–9193

    Article  Google Scholar 

  95. Fu Y, Manthiram A. Enhanced cyclability of lithium-sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor. Chem Mater, 2012, 24: 3081–3087

    Article  Google Scholar 

  96. Li W, Zhang Q, Zheng G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett, 2013, 13: 5534–5540

    Article  Google Scholar 

  97. Wang L, He X, Li J, et al. Analysis of the synthesis process of sulphurpoly(acrylonitrile)-based cathode materials for lithium batteries. J Mater Chem, 2012, 22: 22077–22081

    Article  Google Scholar 

  98. Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ Sci, 2012, 5: 6966–6972

    Article  Google Scholar 

  99. Xin S, Gu L, Zhao N, et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc, 2012, 134: 18510–18513

    Article  Google Scholar 

  100. Li Z, Jiang Y, Yuan L, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano, 2014, 8: 9295–9303

    Article  Google Scholar 

  101. Yang Y, McDowell MT, Jackson A, et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett, 2010, 10: 1486–1491

    Article  Google Scholar 

  102. Fu Y, Su Y-S, Manthiram A. Li2S-carbon sandwiched electrodes with superior performance for lithium-sulfur batteries. Adv Energy Mater, doi: 10.1002/aenm.201300655

  103. Seh ZW, Wang H, Hsu PC, et al. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ Sci, 2014, 7: 672–676

    Article  Google Scholar 

  104. Nan C, Lin Z, Liao H, et al. Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J Am Chem Soc, 2014, 136: 4659–4663

    Article  Google Scholar 

  105. Cai K, Song MK, Cairns EJ, Zhang Y. Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett, 2012, 12: 6474–6479

    Article  Google Scholar 

  106. Yang Y, Zheng G, Misra S, et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithiumion batteries. J Am Chem Soc, 2012, 134: 15387–15394

    Article  Google Scholar 

  107. Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc, 2009, 156: A694–A702

    Article  Google Scholar 

  108. Suo L, Hu Y, Li H, Armand M, Chen L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun, 2013, 4: 1481

    Article  Google Scholar 

  109. Wang Z, Xu D, Xu J, Zhang X. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev, 2014, 43: 7746–7786

    Article  Google Scholar 

  110. Cheng F, Chen J. Nanoporous catalysts for rechargeable Li-air batteries. Acta Chim Sin, 2013, 71: 473–477

    Article  Google Scholar 

  111. Peng Z, Freunberger SA, Hardwick LJ, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed, 2011, 50: 6351–6355

    Article  Google Scholar 

  112. Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev, 2012, 41: 2172–2192

    Article  Google Scholar 

  113. Lim HD, Park KY, Song H, et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv Mater, 2013, 25: 1348–1352

    Article  Google Scholar 

  114. Lu Y, Gasteiger HA, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc, 2011, 133: 19048–19051

    Article  Google Scholar 

  115. Peng Z, Freunberger SA, Chen Y, Bruce PG. A reversible and higher-rate Li-O2 battery. Science, 2012, 337: 563–566

    Article  Google Scholar 

  116. Li F, Chen Y, Tang DM, et al. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ Sci, 2014, 7: 1648–1652

    Article  Google Scholar 

  117. Du J, Cheng F, Wang S, Zhang T, Chen J. M(Salen)-derived nitrogendoped M/C (M = Fe, Co, Ni) porous nanocomposites for electrocatalytic oxygen reduction. Sci Rep, 2014, 4: 4386

    Google Scholar 

  118. Xu J, Wang Z, Xu D, Zhang L, Zhang X. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat Commun, 2013, 4: 2438

    Google Scholar 

  119. Xu J, Xu D, Wang Z, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew Chem Int Ed, 2013, 52: 3887–3890

    Article  Google Scholar 

  120. Wang H, Yang Y, Liang Y, et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst. Energy Environ Sci, 2012, 5: 7931–7935

    Article  Google Scholar 

  121. Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem, 2011, 3: 79–84

    Article  Google Scholar 

  122. Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew Chem Int Ed, 2013, 52: 2474–2477

    Article  Google Scholar 

  123. Han X, Zhang T, Du J, Cheng F, Chen J. Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci, 2013, 4: 368–376

    Article  Google Scholar 

  124. Liang Y, Wang H, Zhou J, et al. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc, 2012, 134: 3517–3523

    Article  Google Scholar 

  125. Zhang T, Cheng F, Du J, Hu Y, Chen J. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation. Adv Energy Mater, doi: 10.1002/aenm.201400654

  126. Du J, Zhang T, Cheng F, et al. Nonstoichiometric perovskite CaMnO3-δ for oxygen electrocatalysis with high activity. Inorg Chem, 2014, 53: 9106–9114

    Article  Google Scholar 

  127. Du J, Pan Y, Zhang T, et al. Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction. J Mater Chem, 2012, 22: 15812–15818

    Article  Google Scholar 

  128. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O2 battery using a redox mediator. Nat Chem, 2013, 5: 489–494

    Article  Google Scholar 

  129. Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J Am Chem Soc, 2014, 136: 8941–8946

    Article  Google Scholar 

  130. Lim HD, Song H, Kim J, et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem, 2014, 126: 4007–4012

    Article  Google Scholar 

  131. Yu M, Ren X, Ma L, Wu Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat Commun, 2014, 5: 5111

    Article  Google Scholar 

  132. Hu X, Han X, Hu Y, Cheng F, Chen J. ɛ-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale, 2014, 6: 3522–3525

    Article  Google Scholar 

  133. Han X, Cheng F, Zhang T, et al. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv Mater, 2014, 26: 2047–2051

    Article  Google Scholar 

  134. Han X, Hu Y, Yang J, Cheng F, Chen J. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem Commun, 2014, 50: 1497–1499

    Article  Google Scholar 

  135. Han X, Cheng F, Chen C, Hu Y, Chen J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res, doi: 10.1007/s12274-014-0604-y

  136. Hu Y, Han X, Cheng F, et al. Size effect of lithium peroxide on charging performance of Li-O2 batteries. Nanoscale, 2014, 6: 177–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Kai Zhang was born in 1987. He received his BSc degree in materials chemistry from Nankai University (2010) and then joined the Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) to study for his PhD degree. He is expecting to get his PhD in 2015 under the supervision of Professor Jun Chen. His research focuses on Liion batteries, Li-S batteries, and Na-ion batteries.

Jun Chen was born in 1967. He is a Cheung Kong Scholar Professor at the College of Chemistry, Nankai University, and Vice Chairman of the Chinese Society of Electrochemistry. He obtained his BSc and MSc degrees from Nankai University in 1989 and 1992, respectively, and his PhD from Wollongong University (Australia) in 1999. He held the NEDO fellowship at the National Institute of AIST Kansai Center (Japan) from 1999 to 2002. He has been working as the chair professor of energy chemistry at Nankai University since 2002. His research activity focuses on nanomaterials electrochemistry, batteries, fuel cells and solar cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Hu, Z., Tao, Z. et al. Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci. China Mater. 57, 42–58 (2014). https://doi.org/10.1007/s40843-014-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-014-0006-0

Keywords

Navigation