Skip to main content
Log in

Laser-induced breakdown spectroscopy: principles of the technique and future trends

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This text is intended as an introductory reading covering the principles of laser-induced breakdown spectroscopy (LIBS), its main applications, and the most promising future trends of the technique. It could be considered as the basis of three or four lectures (6–8 h) in a university course of analytical chemistry/applied spectroscopy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CCD:

Charge-coupled device

CF-LIBS:

Calibration-free LIBS

CMOS:

Complementary metal-oxide semiconductor

DP-LIBS:

Double-pulse LIBS

DP-NELIBS:

Double-pulse NELIBS

FWHM:

Full width at half maximum

HH-LIBS:

Hand-held LIBS

iCCD:

Intensified CCD

ICP-OES:

Inductively coupled plasma–optical emission spectroscopy

ICP-MS:

Inductively coupled plasma–mass spectrometry

IR:

Infrared

IUPAC:

International Unit of Pure of Applied Chemistry

LA-ICP-MS:

Laser ablation-inductively coupled plasma–mass spectrometry

LIBS:

Laser-induced breakdown spectroscopy

LIPS:

Laser-induced plasma spectroscopy

LOD:

Limit of detection

LOQ:

Limit of quantification

LTE:

Local thermal equilibrium

NELIBS:

Nanoparticle-enhanced LIBS

UV:

Ultraviolet

XRF:

X-ray fluorescence

References

  1. Loree TR, Radziemski LJ (1981) Laser-induced breakdown spectroscopy: time-integrated applications. Plasma Chem Plasma Process 1:271–279

    Article  CAS  Google Scholar 

  2. Radziemski LJ, Loree TR (1981) Laser-induced breakdown spectroscopy: time-resolved spectrochemical applications. Plasma Chem Plasma Process 1:281–293

    Article  CAS  Google Scholar 

  3. Brech F, Cross L (1962) Optical microemission stimulated by a ruby MASER. Appl Spectrosc 16:59

    Article  Google Scholar 

  4. Cremers DA, Radziemski LJ (2013) Handbook of laser-induced breakdown spectroscopy. Wiley, New York

    Book  Google Scholar 

  5. Cristoforetti G, Legnaioli S, Palleschi V et al (2008) Observation of different mass removal regimes during the laser ablation of an aluminium target in air. J Anal At Spectrom 23:1518–1528

    Article  CAS  Google Scholar 

  6. Mao XL, Ciocan AC, Russo RE (1998) Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy. Appl Spectrosc 52:913–918

    Article  CAS  Google Scholar 

  7. Thiyagarajan M, Thompson S (2012) Optical breakdown threshold investigation of 1064 nm laser induced air plasmas. J Appl Phys 111:073302

    Article  CAS  Google Scholar 

  8. Atomic Spectra Database Lines Form (2020) National Institute of Standards and Technology (NIST). https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed 29 Apr 2020

  9. Amato G, Cristoforetti G, Legnaioli S et al (2010) Progress towards an unassisted element identification from laser induced breakdown spectra with automatic ranking techniques inspired by text retrieval. Spectrochim Acta Part B At Spectrosc 65:664–670

    Article  CAS  Google Scholar 

  10. Borisov OVV, Mao XLL, Fernandez A et al (1999) Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu–Zn alloys. Spectrochim Acta Part B At Spectrosc 54:1351–1365

    Article  Google Scholar 

  11. Aragón C, Bengoechea J, Aguilera JA (2001) Influence of the optical depth on spectral line emission from laser-induced plasmas. Spectrochim Acta Part B At Spectrosc 56:619–628

    Article  Google Scholar 

  12. Palleschi A, Palleschi V (2018) An extended Kalman filter approach to non-linear multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochim Acta Part B At Spectrosc 149:271–275

    Article  CAS  Google Scholar 

  13. McNaught M, Wilkinson A (1997) IUPAC compendium of chemical terminology (“Gold Book”). Blackwell, Oxford

    Google Scholar 

  14. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

  15. Andrade JM, Cristoforetti G, Legnaioli S et al (2010) Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 65:658–663

    Article  CAS  Google Scholar 

  16. Safi A, Campanella B, Grifoni E et al (2018) Multivariate calibration in laser-induced breakdown spectroscopy quantitative analysis: the dangers of a ‘black box’ approach and how to avoid them. Spectrochim Acta Part B At Spectrosc 144:46–54

    Article  CAS  Google Scholar 

  17. Ciucci A, Corsi M, Palleschi V et al (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964

    Article  CAS  Google Scholar 

  18. Cristoforetti G, De Giacomo A, Dell’Aglio M et al (2010) Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim Acta Part B At Spectrosc 65:86–95

    Article  CAS  Google Scholar 

  19. Cavalcanti GH, Teixeira DV, Legnaioli S et al (2013) One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis. Spectrochim Acta Part B At Spectrosc 87:51–56

    Article  CAS  Google Scholar 

  20. D’Andrea E, Pagnotta S, Grifoni E et al (2015) A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Appl Phys B Lasers Opt 118:353–360

    Article  CAS  Google Scholar 

  21. Botto A, Campanella B, Legnaioli S et al (2019) Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. J Anal At Spectrom 34:81–103

    Article  CAS  Google Scholar 

  22. Gaudiuso R, Melikechi N, Abdel-Salam ZA et al (2018) Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim Acta Part B At Spectrosc 152:123–148

    Article  CAS  Google Scholar 

  23. Cristoforetti G, Lorenzetti G, Benedetti PAA et al (2009) Effect of laser parameters on plasma shielding in single and double pulse configurations during the ablation of an aluminium target. J Phys D Appl Phys 42:225207

    Article  CAS  Google Scholar 

  24. Corsi M, Cristoforetti G, Giuffrida M et al (2004) Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochim Acta Part B At Spectrosc 59:723–735

    Article  CAS  Google Scholar 

  25. Cristoforetti G, Palleschi V (2011) Double-pulse laser ablation of solid targets in ambient gas: mechanisms and effects. Nova Science, New York

    Google Scholar 

  26. Legnaioli S, Lorenzetti G, Pardini L et al (2014) Double and multiple pulse LIBS techniques. In: Musazzi S, Perini U (eds) Laser-induced breakdown spectroscopy. Theory and applications. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  27. De Giacomo A, Gaudiuso R, Koral C et al (2013) Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal Chem 85:10180–10187

    Article  PubMed  CAS  Google Scholar 

  28. De Giacomo A, Salajkova Z, Dell’aglio M (2019) A quantum chemistry approach based on the analogy with π-system in polymers for a rapid estimation of the resonance wavelength of nanoparticle systems. Nanomaterials 9:1–16

    Article  CAS  Google Scholar 

  29. Poggialini F, Campanella B, Legnaioli S, et al (2020) Investigating double pulse nanoparticle-enhanced laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc Article 105845

  30. El-Saeid RHH, Abdel-Salam Z, Pagnotta S et al (2019) Classification of sedimentary and igneous rocks by laser induced breakdown spectroscopy and nanoparticle-enhanced laser induced breakdown spectroscopy combined with principal component analysis and graph theory. Spectrochim Acta Part B At Spectrosc 158:105622

    Article  CAS  Google Scholar 

  31. Latkoczy C, Ghislain T (2006) Simultaneous LIBS and LA-ICP-MS analysis of industrial samples. J Anal At Spectrom 21:1152–1160

    Article  CAS  Google Scholar 

  32. Gottfried JL, De Lucia Jr FC, Miziolek AW (2009) Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy. J Anal At Spectrom 24:288–296

    Article  CAS  Google Scholar 

  33. Baudelet M, Guyon L, Yu J et al (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 88:063901

    Article  CAS  Google Scholar 

  34. Manzoor S, Moncayo S, Navarro-Villoslada F et al (2014) Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Talanta 121:65–70

    Article  CAS  PubMed  Google Scholar 

  35. Russo RE, Bol’šhakov AA, Mao X et al (2011) Laser ablation molecular isotopic spectrometry. Spectrochim Acta Part B At Spectrosc 66:99–104

    Article  CAS  Google Scholar 

  36. D’Ulivo A, Onor M, Pitzalis E et al (2006) Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 61:797–802

    Article  CAS  Google Scholar 

  37. Bol’šhakov AA, Mao X, González JJ, Russo RE (2016) Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art. J Anal At Spectrom 31:119–134

    Article  CAS  Google Scholar 

  38. Sancey L, Motto-Ros V, Busser B et al (2014) Laser spectrometry for multi-elemental imaging of biological tissues. Sci Rep 4:6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grassi R, Grifoni E, Gufoni S et al (2017) Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique. Spectrochim Acta Part B At Spectrosc 127:1–6

    Article  CAS  Google Scholar 

  40. Lorenzetti G, Legnaioli S, Grifoni E et al (2015) Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochim Acta Part B At Spectrosc 112:1–5

    Article  CAS  Google Scholar 

  41. Campanella B, Grifoni E, Legnaioli S et al (2017) Classification of wrought aluminum alloys by ANN evaluation of LIBS spectra from aluminum scrap samples. Spectrochim Acta Part B At Spectrosc 134:52–57

    Article  CAS  Google Scholar 

  42. Legnaioli S, Campanella B, Poggialini F et al (2020) Industrial applications of laser-induced breakdown spectroscopy: a review. Anal Methods 12:1014–1029

    Article  Google Scholar 

  43. Ismaël A, Bousquet B, Michel-Le Pierrès K et al (2011) In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 65:467–473

    Article  PubMed  CAS  Google Scholar 

  44. Guirado S, Fortes FJ, Laserna JJ (2016) Multi-pulse excitation for underwater analysis of copper-based alloys using a novel remote laser-induced breakdown spectroscopy (LIBS) system. Appl Spectrosc 70:618–626

    Article  CAS  PubMed  Google Scholar 

  45. Gaft M, Sapir-Sofer I, Modiano H, Stana R (2007) Laser induced breakdown spectroscopy for bulk minerals online analyses. Spectrochim Acta Part B At Spectrosc 62:1496–1503

    Article  CAS  Google Scholar 

  46. Bulajic D, Cristoforetti G, Corsi M et al (2002) Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project. Spectrochim Acta Part B At Spectrosc 57:1181–1192

    Article  Google Scholar 

  47. Maurice S, Clegg SM, Wiens RC et al (2016) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J Anal At Spectrom 31:863–889

    Article  CAS  Google Scholar 

  48. Erler A, Riebe D, Beitz T et al (2020) Soil nutrient detection for precision agriculture using handheld laser-induced breakdown spectroscopy (LIBS) and multivariate regression methods (PLSR, Lasso and GPR). Sensors (Basel) 20:418

    Article  CAS  Google Scholar 

  49. Lithgow GA, Robinson AL, Buckley SG (2004) Ambient measurements of metal-containing PM2.5 in an urban environment using laser-induced breakdown spectroscopy. Atmos Environ 38:3319–3328

    Article  CAS  Google Scholar 

  50. Zhao D, Li C, Hu Z et al (2018) Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak. Rev Sci Instrum 89:073501

    Article  PubMed  CAS  Google Scholar 

  51. Teng G, Wang Q, Zhang H et al (2020) Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 165:105787

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Palleschi.

Ethics declarations

Conflict of interest

The author does not have conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palleschi, V. Laser-induced breakdown spectroscopy: principles of the technique and future trends. ChemTexts 6, 18 (2020). https://doi.org/10.1007/s40828-020-00114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-00114-x

Keywords

Navigation