Skip to main content
Log in

Numerical Simulation of the Two-Dimensional Heat Diffusion in the Cold Substrate and Performance Analysis of a Thermoelectric Air Cooler Using The Lattice Boltzmann Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This article presents numerical simulations of the two-dimensional temperature distribution in the cold substrate and a performance analysis of a thermoelectric cooler with the Lattice Boltzmann Method. A detailed and concise procedure for the derivation of the source term of Lattice Boltzmann method for a thermal diffusion problem is presented. Numerical simulations are performed using the Bhatnagar-Gross-Krook collision operator with two velocity schemes, namely D2Q4 and D2Q9. The numerical validation is performed by comparisons with an approximate analytical solution and a finite difference method solution. Later, performance parameters of the thermoelectric cooler, based on thermal resistances, are computed from the obtained temperature distribution. The results show that the Lattice Boltzmann Method is capable of simulating the addressed thermal diffusion problem, with very small relative errors (maximum errors of 0.09%) for the temperature distribution. Excellent agreement is observed for the performance parameters, ensuring the robustness of the method. Furthermore, the procedure for the solution of the differential equation can be easily applied to solve other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Area, m2

ci :

Discrete velocities in the LBM formulation, lattice length (lattice time)1

cs :

Speed of sound in the LBM formulation, lattice length (lattice time)1

d:

Thickness of the cold substrate, m

Di :

Differential operator

fi :

Particle distribution function in the LBM formulation

k:

Thermal conductivity of the cold substrate, Wm1 K1

kt :

Thermal conductance of the pellet, W/K

I:

Electrical current, A

Np :

Number of pellets

Q:

Heat transfer rate, W

Q0 :

Heat source rate input, W

R:

Electrical resistance of the pellet, Ohm

Rb :

Heat sink base resistance, KW1

Rb,sp :

Spreading resistance, KW1

Rc,sp :

Resistance between the heat source and the cold substrate, KW1

Rcons :

Constriction resistance, KW1

Rconv :

Convection resistance, KW1

t:

Time, s

T:

Temperature, K

wi :

Weight coefficients in the LBM formulation

x:

Physical position, m or position in LBM formulation, Lattice length

α:

Thermal diffusivity, m2s1 or artificial diffusion coefficient in LBM formulation (in Lattice units)

αt :

Seebeck coefficient, VK1

δ:

Dirac delta function

Δ:

Difference operator

ω:

Relaxation frequency

∇:

Gradient operator

References

  1. Chang, Y., Chang, C., Ke, M., Chen, S.: Thermoelectric air cooling module for electronic devices. Appl. Therm. Eng. 29, 2731–2737 (2009)

    Article  Google Scholar 

  2. Chen, W., Liao, C., Hung, C.: A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl. Energy 89, 464–473 (2012)

    Article  Google Scholar 

  3. Oliveira, K., Cardoso, R., Hermes, C.: Numerical assessment of the thermodynamic performance of thermoelectric cells via two-dimensional modeling. Appl. Energy 130, 280–288 (2014)

    Article  Google Scholar 

  4. Shen, L., Xiao, F., Chen, H., Wang, S.: Investigation of a novel thermoelectric radiant air-conditioning system. Energ Buildings 59, 123–132 (2013)

    Article  Google Scholar 

  5. Manikandan, S., Kaushik, S.C.: Transient Thermal Behavior of Annular Thermoeletric Cooling System. J Electron Mater 46, 2560–2569 (2016)

    Article  Google Scholar 

  6. Dizaji, H.S., Jafarmadar, S., Khalilarya, S.: Novel experiments on COP improvement of thermoeletric air coolers. Energy Convers Manag 187, 328–338 (2019)

    Article  Google Scholar 

  7. Saber, H.H., AlShehri, S.A., Maref, W.: Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. Energy Convers Manag 191, 174–192 (2019)

    Article  Google Scholar 

  8. Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci 52, 62–105 (2016)

    Article  Google Scholar 

  9. Mishra, S., Sahai, H.: Analyses of non-Fourier heat conduction in 1D cylindrical and spherical geometry – an application of the Lattice Boltzmann method. Int. J. Heat Mass Transf 55, 7015–7023 (2012)

    Article  Google Scholar 

  10. Mishra, S., Sahai, H.: Analysis of non-Fourier conduction and radiation in a cylindrical medium using Lattice Boltzmann method and Finite Volume method. Int. J. Heat Mass Transf 61, 41–55 (2013)

    Article  Google Scholar 

  11. Mishra, S., Sahai, H.: Analysis of non-Fourier conduction and volumetric radiation in a concentric spherical shell using Lattice Boltzmann method and finite volume method. Int. J. Heat Mass Transf 68, 51–66 (2014)

    Article  Google Scholar 

  12. Mishra, S., Stephen, A.: Combined mode conduction and radiation heat transfer in a spherical geometry with non-Fourier effect. Int. J. Heat Mass Transf 54, 2975–2989 (2011)

    Article  Google Scholar 

  13. Mohamad, A.: Lattice Boltzmann method for heat diffusion in axis-symmetric geometries. Prog Computat Fluid Dy 9, 490–494 (2009)

    Article  Google Scholar 

  14. Wolf-Gladrow, D.: A Lattice Boltzmann equation for diffusion. J. Stat. Phys 79, 1023–1032 (1995)

    Article  Google Scholar 

  15. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys Rev E 94, 511–525 (1954)

    Article  Google Scholar 

  16. He, X., Luo, L.: Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation. Phys Rev E 56, 6811–6817 (1997)

    Article  Google Scholar 

  17. Higuera, F.J., Jiménez, J.: Boltzmann approach to Lattice gas simulations. EPL (Europhysics Letters) 9, 663 (1989)

    Article  Google Scholar 

  18. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. EPL (Europhysics Letters) 9, 345 (1989)

    Article  Google Scholar 

  19. Mohamad, A.: Lattice Boltzmann method. Springer-Verlag, London Limited (2011)

    Book  Google Scholar 

  20. Guo, Z., Shu, C. (2013). Lattice Boltzmann method and its Applications in Engineering. World Scientific Publishing Co. Pte. Ltd.

  21. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann method. Springer, Switzerland (2017)

    Book  Google Scholar 

  22. Xuan, X., Ng, K., Yap, C., Chua, H.: The maximum temperature difference and polar characteristics of two-stage thermoelectric coolers. Cryogenics 42, 273–278 (2002)

    Article  Google Scholar 

  23. Drabkin, I., Yershova, L., Kondratiev, D., Gromov, G. (2009).:The effect of the substrates two-dimensional temperature distribution on the TEC performance, in: in Proc.of 8th European Workshop on Thermoelectrics.

  24. Duan, Z., Muzychk, Y. (2005).: Experimental investigation of heat transfer in impingement air cooled plate fin heat sinks, in: in 38th AIAA Thermophysics Conference.

  25. Lee, S., Van Au, S., Moran, K. (1995).:Constriction/spreading resistance model for electronics packing, in: in ASME/JSME Thermal Engineering Conference, pp. 199–206.

  26. Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open source thermophysical property library Coolprop. Ind Eng Chem Res 53, 2498–2508 (2014)

    Article  Google Scholar 

  27. Dulnev, G.N., Polschikov, B.V.: Temperature field of a plate with a discrete energy source. J. Eng. Phys 29, 722–727 (1976)

    Google Scholar 

  28. Guzella, M., Cabezas-Gómez, L., Guimarães, L.: Numerical computation and analysis of the numerical scheme order of the two-dimensional temperature field of thermoelectric coolers cold substrate. Int. J. of Appl. And Comp. Math 3, 91–106 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Prasad, K.V., Vajravelu, K., Shivakumara, I.S., Vaidya, H., Basha, N.Z.: Flow and heat transfer of a casson nanofluid over a nonlinear stretching sheet. J. Nanofluids 5, 743–752 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus dos Santos Guzella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Guzella, M., dos Santos, G.R., Cabezas-Gómez, L. et al. Numerical Simulation of the Two-Dimensional Heat Diffusion in the Cold Substrate and Performance Analysis of a Thermoelectric Air Cooler Using The Lattice Boltzmann Method. Int. J. Appl. Comput. Math 7, 130 (2021). https://doi.org/10.1007/s40819-021-01073-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01073-8

Keywords

Navigation