Skip to main content
Log in

A New Trigonometrical Algorithm for Computing Real Root of Non-linear Transcendental Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm to find a non-zero real root of the transcendental equations using trigonometrical formula. Indeed, the new proposed algorithm is based on the combination of inverse of sine series and Newton Raphson method, which produces better approximate root than Newton Raphson method. The implementation of the proposed algorithm in MATLAB is also discussed. Certain numerical examples are presented to show the efficiency of the proposed algorithm. This algorithm will help to implement in the commercial package for finding a real root of a given transcendental equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chitode, J.S.: Numerical Techniques, 2nd edn. Technical Publications, Pune (2008)

    Google Scholar 

  2. Somesundaram, R.M., Chandrasekaran, R.M.: Numerical Methods with \(C++\) Programming. Prentice-Hall of India, Delhi (2005)

    Google Scholar 

  3. Novak, E., Ritter, K., Wozniakowski, H.: Average-case ompitmality of a hybrid secant-bisection method. Math. Comput. 64(212), 1517–1539 (1995)

    Article  Google Scholar 

  4. Eiger, A., Sikorski, K., Stenger, F.: A bisection method for systems of nonlinear equations. ACM Trans. Math. Softw. 10(4), 367–377 (1984)

    Article  MathSciNet  Google Scholar 

  5. Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving system of non-linear equation. Numer. Math. 49, 123–138 (1986)

    Article  MathSciNet  Google Scholar 

  6. Bachrathy, D., Stépán, G.: Bisection method in higher dimensions and the efficiency number. Mech. Eng. 56(2), 81–86 (2012)

    Google Scholar 

  7. Wood, G.R.: The bisection method in higher dimensions. Math. Program. 55, 319–337 (1992)

    Article  MathSciNet  Google Scholar 

  8. Wu, X.: Improved Muller method and bisection method with global and asymptotic superlinear convergence of both point and interval for solving nonlinear equations. Appl. Math. Comput. 166, 299–311 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Yakoubsohn, J.-C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J. Complex. 21, 652–690 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gutierrez, C., Gutierrez, F., Rivara, M.-C.: Complexity of the bisection method. Theor. Comput. Sci. 382, 131–138 (2007)

    Article  MathSciNet  Google Scholar 

  11. Wu, X., Kanwar, V., Xia, J.: An improved regula falsi method with quadratic convergence of both diameter and point for enclosing simple zeros of nonlinear equations. Appl. Math. Comput. 144, 381–388 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Dowell-Jarratt, A.: modified Regula-Falsi method for computing the real root of an equation. BIT Numer. Math. 11, 168–174 (1971)

    Article  Google Scholar 

  13. Saied, A., Liao, S.: A new modification of False-Position method based on homotopy analysis method. Appl. Math. Mech. 29(2), 223–228 (2003)

    MathSciNet  Google Scholar 

  14. Wu, X., Wu, H.: On a class of quadratic convergence iteration formulae without derivatives. Appl. Math. Comput. 107, 77–80 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Zhu, Y.R., Wu, X.Y.: A free derivative iteration method of order three having convergence of both point and interval for non-linear equations. Appl. Math. Comput. 137, 49–55 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Johan, V., Ronald, C.: The Newton–Raphson method. Int. J. Math. Educ. Sci. Technol. 26(2), 177–193 (1995)

    Article  Google Scholar 

  17. Mamta, V.K., Kukreja, V.K., Singh, S.: On a class of quadratically convergent iteration formulae. Appl. Math. Comput. 166, 633–637 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Mamta, V.K., Kukreja, V.K., Singh, S.: On some third-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 171, 272–280 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Sharma, J.R., Goyal, R.K.: Fourth-order derivative-free methods for solving non-linear equations. Int. J. Comput. Math. 83(1), 101–106 (2006)

    Article  MathSciNet  Google Scholar 

  20. Noor, M.A., Noor, K.I., Khan, W.A., Ahmad, F.: On iterative methods for nonlinear equations. Appl. Math. Comput. 183, 128–133 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Noor, M.A., Ahmad, F.: Numerical comparison of iterative methods for solving nonlinear equations. Appl. Math. Comput. 180, 167–172 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Noor, M.A., Noor, K.I.: Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 183, 322–327 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Chen, J., Li, W.: An exponential regula falsi method for solving nonlinear equations. Numer. Algorithms 41, 327–338 (2006)

    Article  MathSciNet  Google Scholar 

  24. Chen, J., Li, W.: An improved exponential regula falsi methods with quadratic convergence of both diameter and point for solving nonlinear equations. Appl. Numer. Math. 57, 80–88 (2007)

    Article  MathSciNet  Google Scholar 

  25. Chen, J.: New modified regula falsi method for nonlinear equations. Appl. Math. Comput. 184, 965–971 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. pp. 1–44, (2015). arXiv:1308.4088v2 [cs.SC]

  27. Abbott, J.: Quadratic interval refinement for real roots. In: ACM Communications in Computer Algebra, vol. 48, no. 1 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Srivastav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastav, V.K., Thota, S. & Kumar, M. A New Trigonometrical Algorithm for Computing Real Root of Non-linear Transcendental Equations. Int. J. Appl. Comput. Math 5, 44 (2019). https://doi.org/10.1007/s40819-019-0600-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0600-8

Keywords

Mathematics Subject Classification

Navigation