Skip to main content
Log in

Study of Solution to a Toppled System of Fractional Differential Equations with Integral Boundary Conditions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted by developing some necessary and sufficient conditions required for the existence of at least one solution to a highly nonlinear toppled system of fractional order boundary value problems with integral boundary conditions. By the use of classical fixed point theorems like Banach contraction theorem, nonlinear alternative of Leray–Schauder type and fixed point theorem of cone expansion and contraction of norm type, we establish sufficient conditions for the existence as well as for uniqueness of solution to the system under consideration. Further, we also discuss Hyers–Ullam stability for the considered toppled system. Also, some examples are provided to demonstrate our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional differential equations. In: Mathematics in Science and Engineering. Academic Press, San Diego, New York (1999)

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Lakshmikantham, V., Vatsala, A.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828–834 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)

    Article  Google Scholar 

  5. Pang, G., Chen, W., Fu, Z.: Space-fractional advection–dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wen, C., Zhuo-Jia, F., Ching-Shyang, C.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Heidelberg (2014)

    Google Scholar 

  7. Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M.: Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 5(2), 569–574 (2014)

    Article  Google Scholar 

  8. Yang, A.-M., Zhang, Y.-Z., Cattani, C., Xie, G.-N., Rashidi, M.M., Zhou, Y.-J., Yang, X.-J. : Application of local fractional series expansion method to solve Klein–Gordon equations on cantor sets. Abst. Appl. Anal. 2014, 1–6 (2014) (article ID 372741)

  9. Kulish, V.V., Lage, J.L.: Fractional-diffusion solutions for transient local temperature and heat flux. J. Heat Transf. 122(2), 372–376 (2000)

  10. Wazwaz, A.M.: Compacton solitons and periodic solutions for some forms of nonlinear Klein Gordon equations. Chaos Solitons Fract. 28(4), 1005–1013 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caudrey, P.J., Eilbeck, I.C., Gibbon, J.D.: The Sine–Gordon equation as a model classical field theory. Nuovo Cimento 25, 497–511 (1975)

    Article  Google Scholar 

  12. Elsaid, A., Hammada, D.: Reliable treatment of homotopy perturbation method for the Sine–Gordon equation of arbitrary (fractional) order. J. Fract. Calc. Appl 2(1), 1–8 (2012)

    Google Scholar 

  13. Tamsir, M., Srivastava, V.K.: Analytical study of time-fractional order Klein Gordon equation. Alex. Eng. J. 55, 561–567 (2016)

    Article  Google Scholar 

  14. Carpinteri, A., Chiaia, B., Cornetti, P.: Static–kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 191, 3–19 (2001)

    Article  MATH  Google Scholar 

  15. Loverro, A.: Fractional Calculus: History, Definitions and Applications for the Engineer. University of Notre Dame, Notre Dame (2004)

    Google Scholar 

  16. Khan, R.A.: The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 10, 1–15 (2003)

    Article  MathSciNet  Google Scholar 

  17. Yang, B.: Positive Solutions for a fourth order boundary value problem. Electron. J. Qual. Theory Differ. Equ. 3, 1–17 (2005)

    Article  MathSciNet  Google Scholar 

  18. Webb, J.R.L.: Positive solutions of some higher order nonlocal boundary value problems. Electron. J. Qual. Theory Differ. Equ. 29(1), 1–15 (2009)

  19. Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2008(3), 1–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Webb, J.R.L., Infante, G.: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79, 238–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franco, D., Infante, G., Minhos, F.: Nonlocal boundary value problems (editorial). Bound. Value Probl. 2012, 23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lakshmikantham, V., Vatsala, A.: Nagumumo-type uniqueness result for fractional differential equations. Nonlinear Anal. (TMA) 71, 2886–2889 (2009)

    Article  MATH  Google Scholar 

  23. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, Amsterdam (2006)

    MATH  Google Scholar 

  25. Khan, R.A.: Existence and approximation of solutions of nonlinear problems with integral boundry conditions. Dyn. Syst. Appl. 14, 281–296 (2005)

    Google Scholar 

  26. Cheng, Y., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 49, 605–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rehman, M., Khan, R.A.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 61, 2630–2637 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shah, K., Khan, R.A.: Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions. Differ. Equ. Appl. 7(2), 245–262 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Shah, K., Khalil, H., Khan, R.A.: Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. J. Chaos Solit. Fract. 77, 240–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shah, K., Ali, A., Khan, R.A.: Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems. Bound. Value Probl. 2016, 43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ahmad, B., Nieto, J.J.: Existance results for a coupled system of nonlinear fractional differential equations with three-point boundry conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, W.: Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations. Comput. Math. Appl. 63, 288–297 (2012)

    Article  MathSciNet  Google Scholar 

  34. Agarwal, R.P., Hristova, S., ORegon, D.: Stability of solution to caputo fractional differential equations. Electron. J. Differ. Equ. 58, 1–22 (2016)

    MathSciNet  Google Scholar 

  35. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weiss, L., Infante, E.F.: On the stability of systems defined over a finite time interval. Proc. Natl. Acad. Sci. USA 54, 44–48 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ulam, S.M.: Problems in Modern Mathematics, Chap. 6. Wiley, New York (1940)

    Google Scholar 

  38. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Soc. USA 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Urs, C.: Coupled fiexd point theorems and applications to periodic boundary value problems. Miskolic Math. Notes 14(1), 323–333 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Kumlin, P.: A note on fixed point theory. In: Mathematics Chalmers and GU, TMA 401/MAN 670 Functional Analysis. Cambridge University Press, UK (2003/2004)

  42. Agarwal, R.P, Meehan, M., ORegan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  43. Jung, S.M.: Hyers–Ulam stability of differential equation \(\ddot{y} +2x\dot{y}-2ny =0\). J. Inequal. Appl. 2010, 1–12 (2010) (article ID 793197)

  44. Mura, T., Takahasi, S.E., Choda, H.: On the Hyers–Ulam stability for real continuous function valued differentiable map. Tokyo J. Math. 24, 467–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jung, S.M.: Hyers–Ulam stability of first order linear differential equations with constant coefficients. Math. Anal. Appl. 320, 549–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jung, S.M., Rassias, T.M.: Generalized Hyers–Ulam stability of Riccati differential equation. Math. Inequal. Appl. 11(4), 777–782 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Gachpazan, M., Baghani, O.: HyersUlam stability of Volterra integral equation. J. Nonlinear Anal. Appl. 2, 19–25 (2010)

    MATH  Google Scholar 

  48. Cimpean, D.S., Popa, D.: HyersUlam stability of Eulers equation. Appl. Math. Lett. 24, 1539–1543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Burger, M., Ozawa, N., Thom, A.: On Ulam stability. Isr. J. Math. 193, 109–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Andrs, S., Mszros, A.R.: Ulam Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219, 4853–4864 (2013)

    MathSciNet  Google Scholar 

  51. Wang, J., Li, X.: UlamHyers stability of fractional Langevin equations. Appl. Math. Comput. 258, 72–83 (2015)

    MathSciNet  Google Scholar 

  52. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  53. Benchohra, M., Nieto, J.J., Ouahab, A.: Second-order boundary value problem with integral boundary conditions. Bound. Value Problems (2011). doi:10.1155/2011/260309

Download references

Acknowledgments

We are really thankful to the suggestions and comments point out by the anonymous referee, which improved the quality of this paper.

Authors’ Contributions   All authors equally contributed the MS and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Shah.

Ethics declarations

Conflict of interest

We declare that the authors have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K., Khan, R.A. Study of Solution to a Toppled System of Fractional Differential Equations with Integral Boundary Conditions. Int. J. Appl. Comput. Math 3, 2369–2388 (2017). https://doi.org/10.1007/s40819-016-0243-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0243-y

Keywords

Mathematics Subject Classification

Navigation