Skip to main content
Log in

On Stagnation Point Flow of Variable Viscosity Nanofluids Past a Stretching Surface with Radiative Heat

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper examines the effect of thermal radiation on stagnation point boundary layer flow of variable viscosity water base nanofluid over a convectively heated stretching surface. The model nonlinear problem incorporates both thermophoresis and Brownian motion effects. Similarity transformation has been employed to convert the governing partial differential equations to nonlinear ordinary equations and tackled numerically using a fourth order Runge–Kutta–Fehlberg integration scheme with shooting technique. The effects of various thermophysical parameters on nanofluid velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are discussed thoroughly and analyzed through graphs and tables. Results for some special cases of the present analysis are in good agreement with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles, pp. 99–105. ASME, FED 231/MD 66, USA (1995)

  2. Buongiorno, J., Hu, L.W.: Nanofluid heat transfer enhancement for nuclear reactor application. In: Proceedings of the ASME (2009) 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, MNHMT. doi:10.1115/MNHMT2009-18062 (2009)

  3. Huminic, G., Huminic, A.: Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16, 5625–5638 (2012)

    Article  MATH  Google Scholar 

  4. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass. Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  5. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  6. Labropulu, F., Li, D., Pop, I.: Non orthogonal stagnation point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int. J. Therm. Sci. 49, 1042–1050 (2010)

    Article  Google Scholar 

  7. Grubka, L.J., Bobba, K.M.: Heat transfer characteristic of a continuous stretching surface with variable temperature. J. Heat Trans. 107, 248–250 (1985)

    Article  Google Scholar 

  8. Andersson, H.I.: MHD flow of a visco-elastic fluid past a stretching sheet. Acta Mech. 95, 227–230 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yurusoy, M., Pakdemirli, M.: Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian fluids. Int. J. Eng. Sci. 35(8), 731–740 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yurusoy, M., Pakdemirli, M.: Exact solutions of boundary layer equations of a special non-Newtionian fluid over a stretching sheet. Mech. Res. Commun. 26(2), 171–175 (1999)

    Article  MATH  Google Scholar 

  11. Nadeem, S., Mehmood, R., Akbar, N.S.: Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface. Chin. Phys. B 24(1), 014702(1-8) (2015)

    Google Scholar 

  12. Rana, P., Bhargava, R.: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun. Nonlinear Sci. Numer. Simul. 17(1), 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  13. Qasim, M., Khan, I., Shafie, S.: heat transfer in a micropolar fluid over a stretching sheet with newtonian heating. PLOS One 8(4), 1–9 (2013)

    Article  Google Scholar 

  14. Hassani, M., Tabar Mohammad, M., Nemati, H., Domairry, G., Noori, F.: An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. Int. J. Therm. Sci. 50(11), 2256–2263 (2011)

    Article  Google Scholar 

  15. Oztop, H.F., Abu-Nanda, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  16. Makinde, O.D., Ogulu, A.: The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem. Eng. Commun. 195(12), 1575–1584 (2008)

    Article  Google Scholar 

  17. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  18. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)

    Article  Google Scholar 

  19. Ibrahim, W., Makinde, O.D.: The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Comput. Fluids 86, 433–441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khan, W.A., Makinde, O.D., Khan, Z.H.: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int. J. Heat Mass Transf. 74, 285–291 (2014)

    Article  Google Scholar 

  21. Baag, S., Mishra, S.R.: Heat and mass transfer analysis on MHD 3-D water-based nanofluid. J. Nanofluid 4(1–4), 1–10 (2015)

    Google Scholar 

  22. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  23. Rosseland, S.: Theoretical Astrophysics. Oxford University, New York (1936)

    MATH  Google Scholar 

  24. Ozisik, M.N.: Radiation Transfer and Interactions with Conduction and Convection. Wiley-Inter-Science, USA (1973)

    Google Scholar 

  25. Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)

    Google Scholar 

  26. Makinde, O.D.: Free-convection flow with thermal radiation and mass transfer past a moving vertical porous plate. Int. Commun. Heat Mass transf. 32, 1411–1419 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Makinde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makinde, O.D., Mishra, S.R. On Stagnation Point Flow of Variable Viscosity Nanofluids Past a Stretching Surface with Radiative Heat. Int. J. Appl. Comput. Math 3, 561–578 (2017). https://doi.org/10.1007/s40819-015-0111-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0111-1

Keywords

Navigation