Skip to main content
Log in

Finite-Time Singularity Formation for Strong Solutions to the Axi-symmetric 3D Euler Equations

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

For all \(\epsilon >0\), we prove the existence of finite-energy strong solutions to the axi-symmetric 3D Euler equations on the domains \( \{(x,y,z)\in {\mathbb {R}}^3: (1+\epsilon |z|)^2\le x^2+y^2\}\) which become singular in finite time. The solutions we construct have bounded vorticity before a certain time when the vorticity becomes unbounded. We further show that solutions with 0 swirl are always globally regular in the setting we consider. The proof of singularity formation relies on the use of approximate solutions at exactly the critical regularity level which satisfy a 1D system which has solutions which blow-up in finite time. The construction bears similarity to our previous result on the Boussinesq system Elgindi and Jeong (Finite-time Singularity Formation for Strong Solutions to the Boussinesq System, 2017) though a number of modifications must be made due to anisotropy and since our domains are not scale-invariant. This seems to be the first construction of singularity formation for finite-energy strong solutions to the actual 3D Euler system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See, for example, http://www.claymath.org/sites/default/files/navierstokes.pdf.

  2. It is important to remark that, to avoid ill-posedness issues (as in [23] and [3]), it is necessary to ask that \(\nabla u\) is bounded on a time-interval and not just at the initial time. In fact, one could simply ask whether there is a Banach space \(X\subset L^2\cap W^{1,\infty }({\mathbb {R}}^3)\) where the 3D Euler equations are locally well-posed but not globally well-posed.

  3. While Yudovich [69] solutions are usually called weak solutions, we feel that classifying them as such is slightly misleading in the present context. Besides, the Yudovich theory does not extend to 3D even locally in time.

  4. We are aware that the incompressible Euler equations satisfies a two-parameter family of scaling invariances. However, using the time scaling invariance introduces a number of difficulties which are still not fully understood.

  5. Unfortunately this error appears in a few books and papers in mathematical fluid mechanics. We thank Dongyi Wei for pointing this out to us.

  6. Note that \(\arctan {{\frac{1}{\epsilon }}}<{\frac{\pi }{2}}\) for every \(\epsilon >0\).

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Li, D.: Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces. Geom. Funct. Anal. 25(1), 1–86 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Buckmaster, T., De Lellis, C., Székelyhidi, L. Jr., Vicol, V.: Onsager’s conjecture for admissible weak solutions. ArXiv e-prints, January (2017)

  6. Bustamante, M.D., Kerr, R.M.: 3D Euler about a 2D symmetry plane. Phys. D 237(14–17), 1912–1920 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Childress, S., Ierley, G.R., Spiegel, E.A., Young, W.R.: Blow-up of unsteady two-dimensional Euler and Navier–Stokes solutions having stagnation-point form. J. Fluid Mech. 203, 1–22 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Choi, K., Hou, T.Y., Kiselev, A., Luo, G., Sverak, V., Sverak, V., Yao, Y.: On the finite-time blowup of a one-dimensional model for the three-dimensional axisymmetric Euler equations. Commun. Pure Appl. Math. 70, 2218–2243 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Choi, K., Kiselev, A., Yao, Y.: Finite time blow up for a 1D model of 2D Boussinesq system. Commun. Math. Phys. 334(3), 1667–1679 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Constantin, P.: The Euler equations and nonlocal conservative Riccati equations. Int. Math. Res. Not. 9, 455–465 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Fefferman, C., Majda, A.J.: Geometric constraints on potentially singular solutions for the \(3\)-D Euler equations. Commun. Partial Differ. Equ. 21(3–4), 559–571 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the \(2\)-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Majda, A.J., Tabak, E.G.: Singular front formation in a model for quasigeostrophic flow. Phys. Fluids 6(1), 9–11 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  15. De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59(5–6), 1251–1263 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  16. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    MathSciNet  MATH  Google Scholar 

  17. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Deng, J., Hou, T.Y., Xinwei, Y.: Geometric properties and nonblowup of 3D incompressible Euler flow. Commun. Partial Diff. Equ. 30(1–3), 225–243 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Elgindi, T. M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the Boussinesq system. ArXiv e-prints, August (2017)

  20. Elgindi, T.M., Jeong, I.-J.: On the effects of advection and vortex stretching. To appear in Arch. Rat. Mech. Anal

  21. Elgindi, T.M., Jeong, I.-J. : Symmetries and critical phenomena in fluids. To appear in Commun. Pure. Appl. Math

  22. Elgindi, T.M.: Remarks on functions with bounded Laplacian. arXiv:1605.05266, (2016)

  23. Elgindi, T.M., Masmoudi, N.: \({L}^\infty \) ill-posedness for a class of equations arising in hydrodynamics. To appear in Arch. Rat. Mech. Anal

  24. Elgindi, T.M., Jeong, I.-J.: Ill-posedness for the incompressible Euler equations in critical Sobolev spaces. Ann. PDE 3(1), 19 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Elling, V.: Self-similar 2d Euler solutions with mixed-sign vorticity. Commun. Math. Phys. 348(1), 27–68 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Friedlander, S., Pavlović, N.: Blowup in a three-dimensional vector model for the Euler equations. Commun. Pure Appl. Math. 57(6), 705–725 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Gibbon, J.D.: The three-dimensional Euler equations: where do we stand? Phys. D 237(14–17), 1894–1904 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Gibbon, J.D., Bustamante, M., Kerr, R.M.: The three-dimensional Euler equations: singular or non-singular? Nonlinearity 21(8), T123–T129 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Gibbon, J.D., Moore, D.R., Stuart, J.T.: Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations. Nonlinearity 16(5), 1823–1831 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Gibbon, J.D., Ohkitani, K.: Singularity formation in a class of stretched solutions of the equations for ideal magneto-hydrodynamics. Nonlinearity 14(5), 1239–1264 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Gilbarg, D, Trudinger, NS.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the 1998 edition (2001)

    MATH  Google Scholar 

  32. Grisvard, P.: Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, (1985)

  33. Hou, T.Y., Lei, Z.: On the stabilizing effect of convection in three-dimensional incompressible flows. Commun. Pure Appl. Math. 62(4), 501–564 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16(6), 639–664 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Isett, P.: A Proof of Onsager’s Conjecture. ArXiv e-prints, August (2016)

  36. Jia, H, Sverak, V: Journal of Functional Analysis 268(12), 3734–3766 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Kato, T: Remarks on the Euler and Navier–Stokes equations in \(\bf {R}^2\). In Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), pages 1–7. Amer. Math. Soc., Providence, R.I., (1986)

  39. Katz, N.H., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. Am. Math. Soc. 357(2), 695–708 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Kerr, R. M.: Evidence for a singularity of the three-dimensional, incompressible Euler equations. In Topological aspects of the dynamics of fluids and plasmas (Santa Barbara, CA, 1991), volume 218 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pp. 309–336. Kluwer Acad. Publ., Dordrecht, (1992)

  41. Kerr, R.M.: Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A 5(7), 1725–1746 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Kiselev, A., Ryzhik, L., Yao, Y., Zlatoš, A.: Finite time singularity for the modified SQG patch equation. Ann. Math. 184(3), 909–948 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Kiselev, A., Šverák, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. 180(3), 1205–1220 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Kiselev, A., Zlatos, A.: On discrete models of the Euler equation. Int. Math. Res. Not. 38, 2315–2339 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Kiselev, A., Zlatoš, A.: Blow up for the 2D Euler equation on some bounded domains. J. Diff. Equ. 259(7), 3490–3494 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214(1), 191–200 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, vol. 12. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  48. Larios, A., Petersen, M., Titi, E.S., Wingate, B.: A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the voigt regularization. Theor. Comput. Fluid Dyn. 32, 23–34 (2018)

    MathSciNet  Google Scholar 

  49. Leray, J.: Essai sur les mouvements plans d’un liquide visqueux emplissant l’espace. Acta. Math. 63, 193–248 (1934)

    MathSciNet  MATH  Google Scholar 

  50. Luo, G., Hou, T.Y.: Potentially singular solutions of the 3D axisymmetric euler equations. Proc. Natl. Acad. Sci. 111(36), 12968–12973 (2014)

    ADS  Google Scholar 

  51. Luo, G., Hou, T.Y.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multiscale Model. Simul. 12(4), 1722–1776 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Majda, A: Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, vol. 9. New York University Courant Institute of Mathematical Sciences, New York (2003)

  53. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  54. Necas, J., Ruzicka, M., Sverák, V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176(2), 283–294 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Ohkitani, K., Gibbon, J.D.: Numerical study of singularity formation in a class of Euler and Navier–Stokes flows. Phys. Fluids 12(12), 3181–3194 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin-Lax-Majda equation. Nonlinearity 21(10), 2447–2461 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Pak, H.C., Park, Y.J.: Existence of solution for the Euler equations in a critical Besov space \({ B}^1_{\infty,1}({\mathbb{R}}^n)\). Commun. Partial Diff. Equ. 29(7–8), 1149–1166 (2004)

    Google Scholar 

  58. Pumir, A., Siggia, E.D.: Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A 4(7), 1472–1491 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Sarria, A., Saxton, R.: Blow-up of solutions to the generalized inviscid Proudman–Johnson equation. J. Math. Fluid Mech. 15(3), 493–523 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    MathSciNet  MATH  Google Scholar 

  61. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    MathSciNet  MATH  Google Scholar 

  62. Stuart, J.T.: Nonlinear Euler partial differential equations: singularities in their solution. Applied mathematics. fluid mechanics, astrophysics (Cambridge, MA, 1987), pp. 81–95. World Sci. Publishing, Singapore (1988)

  63. Tao, T.: On the universality of the incompressible Euler equation on compact manifolds. ArXiv e-prints, July (2017)

  64. Tao, T.: Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann. PDE 9, 79 (2016)

    MathSciNet  MATH  Google Scholar 

  65. Taylor, M.E.: Partial Differential Equations I. Basic Theory, vol. 115, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  66. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143(1), 29–51 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations. Commun. Math. Phys. 328(1), 29–44 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. 32(6), 769–812 (1999)

    MathSciNet  MATH  Google Scholar 

  69. Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for helpful comments. T.M. Elgindi acknowledges funding from the NSF grants DMS-1817134 and DMS-1402357. I.-J. Jeong has been supported by the POSCO Science Fellowship of POSCO TJ Park Foundation and the National Research Foundation of Korea(NRF) Grant (No. 2019R1F1A1058486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Elgindi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgindi, T.M., Jeong, IJ. Finite-Time Singularity Formation for Strong Solutions to the Axi-symmetric 3D Euler Equations. Ann. PDE 5, 16 (2019). https://doi.org/10.1007/s40818-019-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-019-0071-6

Navigation