Skip to main content
Log in

Failure of inland valleys development: a hydrological diagnosis of the Bankandi valley in Burkina Faso

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Several developed inland valleys for rice production were abandoned due to poor design or implementation. The Bankandi inland valley (BIV) is a contour bunds system developed in 2006 by a development project, currently experiencing a systematic waterlogging. This study assessed: (1) the waterlogging vs. changing hydro-climatic conditions relationship; (2) the hydrological design and implementation of water control infrastructures; and (3) how digital elevation models (DEMs) data could be used for inland valleys development. To investigate the waterlogging vs. changing hydro-climatic conditions (precipitation and discharge), the conceptual HBV model was applied; coupled with break and trend detections tests. To evaluate the accuracy of the location of drainage flume and contour bunds, a topographic survey using a D-GPS was performed. To explore free DEMs as support tool in the development of inland valley, the Shuttle Radar Topography Mission 1 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer 1, were used. The results show that: (1) the waterlogging was not related to changing environmental conditions; (2) major flaws including bunds not implemented on contour lines contribute to the waterlogging; (3) free DEMs were not accurate enough for valley development. The overall diagnostic of BIV entails conducting basic hydrological investigations prior to implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amatya D, Panda S, Trettin C, Ssegane H (2012) Effects of uncertainty of drainage area on low-gradient watershed hydrology. Presented at the South Carolina water resources conference, Columbia Metropolitan convention center, USA

  • Andriesse W, Fresco LO (1991) A characterization of rice-growing environments in West Africa. Agric Ecosyst Environ 33:377–395. https://doi.org/10.1016/0167-8809(91)90059-7

    Article  Google Scholar 

  • Andriesse W, Fresco LO, Van Duivenbooden N, Windmeijer PN (1994) Multi-scale characterization of inland valley agro-ecosystems in West Africa. NJAS Wagening J Life Sci 42:159–179

    Google Scholar 

  • Arun PV (2013) A comparative analysis of different DEM interpolation methods. Egypt J Remote Sens Space Sci 16:133–139. https://doi.org/10.1016/j.ejrs.2013.09.001

    Article  Google Scholar 

  • Becker M, Johnson DE (2001) Improved water control and crop management effects on lowland rice productivity in West Africa. Nutr Cycl Agroecosystems 59:119–127. https://doi.org/10.1023/A:1017585328904

    Article  Google Scholar 

  • Boyer JF (2002) Khronostat software for statistical analysis of time series. IRD UR2, Program 21 FRIEND AOC, UMRGBE hydrology team, University of Montpellier II, Paris Mines School, France

  • Danvi A, Jütten T, Giertz S et al (2016) A spatially explicit approach to assess the suitability for rice cultivation in an inland valley in central Benin. Agric Water Manag 177:95–106. https://doi.org/10.1016/j.agwat.2016.07.003

    Article  Google Scholar 

  • Djagba JF, Rodenburg J, Zwart SJ et al (2014) Failure and success factors of irrigation system developments: a case study from the Ouémé and Zou Valleys in Benin. Irrig Drain 63:328–339. https://doi.org/10.1002/ird.1794

    Article  Google Scholar 

  • Djagba JF, Sintondji LO, Kouyaté AM, Baggie I, Agbahungba G, Hamadoun A, Zwart SJ (2018) Predictors determining the potential of inland valleys for rice production development in West Africa. Appl Geogr 96:86–97. https://doi.org/10.1016/j.apgeog.2018.05.003

    Article  Google Scholar 

  • Elkhrachy I (2017) Vertical accuracy assessment for SRTM and ASTER digital elevation models: a case study of Najran city. Saudi Arabia. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2017.01.007

    Article  Google Scholar 

  • Fournier J (1998) Le Diagnostic rapide des bas-fonds Soudano-Sahéliens. Sud Sci Technol 2:12–21

    Google Scholar 

  • Gabiri G, Diekkrüger B, Leemhuis C et al (2018) Determining hydrological regimes in an agriculturally used tropical inland valley wetland in central Uganda using soil moisture, groundwater, and digital elevation data. Hydrol Process. https://doi.org/10.1002/hyp.11417

    Article  Google Scholar 

  • Giertz S, Steup G, Schönbrodt S (2012) Use and constraints on the use of inland valley ecosystems in central Benin: results from an inland valley survey. Erdkunde. https://doi.org/10.3112/erdkunde.2012.03.04

    Article  Google Scholar 

  • Guo-an T, Yang-he H, Strobl J, Wang-qing L (2001) The impact of resolution on the accuracy of hydrologic data derived from DEMs. J Geogr Sci 11:393–401. https://doi.org/10.1007/BF02837966

    Article  Google Scholar 

  • Haefele SM, Wopereis MCS, Ndiaye MK, Kropff MJ (2003) A framework to improve fertilizer recommendations for irrigated rice in West Africa. Agric Syst 76:313–335. https://doi.org/10.1016/S0308-521X(02)00080-X

    Article  Google Scholar 

  • Hector B, Cohard J-M, Séguis L, Galle S, Peugeot C (2018) Hydrological functioning of western African inland valleys explored with a critical zone model. Hydrol Earth Syst Sci 22:5867–5888. https://doi.org/10.5194/hess-22-5867-2018

    Article  Google Scholar 

  • Hounkpatin OKL (2017) Digital soil mapping using survey data and soil organic carbon dynamics in semi-arid Burkina Faso. Ph.D. Thesis, University of Bonn

  • Jarihani AA, Callow JN, McVicar TR et al (2015) Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J Hydrol 524:489–506. https://doi.org/10.1016/j.jhydrol.2015.02.049

    Article  Google Scholar 

  • Keita A, Yacouba H, Hayde LG, Schultz B (2013) A single-season irrigated rice soil presents higher iron toxicity risk in tropical savannah valley bottoms. Open J Soil Sci 03:314. https://doi.org/10.4236/ojss.2013.37036

    Article  Google Scholar 

  • Kenward T, Lettenmaier DP, Wood EF, Fielding E (2000) Effects of digital elevation model accuracy on hydrologic predictions. Remote Sens Environ 74:432–444. https://doi.org/10.1016/S0034-4257(00)00136-X

    Article  Google Scholar 

  • Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277. https://doi.org/10.1016/j.jhydrol.2012.01.011

    Article  Google Scholar 

  • Kocak G, Buyuksalih G, Oruc M (2005) Accuracy assessment of interferometric digital elevation models derived from the shuttle radar topography mission X- and C-band data in a test area with rolling topography and moderate forest cover. Opt Eng 44:036201. https://doi.org/10.1117/1.1870000

    Article  Google Scholar 

  • Lançon F, Erenstein O (2002) Potential and prospects for rice production in West Africa. In: Sub-regional workshop on harmonization of policies and co-ordination of programmes on rice in the ECOWAS sub-region Accra, Ghana, pp 5–6

  • Lidon B, Legoupil J-C, Blanchet F et al (1998) Le diagnostic rapide de pré-aménagement (Diarpa): Un outil d’aide à l’aménagement des zones de bas-fonds. Agriculture et développement, pp 61–80

  • Masiyandima MC, van de Giesen N, Diatta S et al (2003) The hydrology of inland valleys in the sub-humid zone of West Africa: rainfall-runoff processes in the M’bé experimental watershed. Hydrol Process 17:1213–1225. https://doi.org/10.1002/hyp.1191

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nikolakopoulos KG, Kamaratakis EK, Chrysoulakis N (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27:4819–4838. https://doi.org/10.1080/01431160600835853

    Article  Google Scholar 

  • Novoa J, Chokmani K, Nigel R, Dufour P (2015) Quality assessment from a hydrological perspective of a digital elevation model derived from WorldView-2 remote sensing data. Hydrol Sci J 60:218–233. https://doi.org/10.1080/02626667.2013.875179

    Article  Google Scholar 

  • Oosterbaan RJ, Gunneweg HA, Huizing A (1986) Water control for rice cultivation in small valleys of west africa. Annual report—International institute for land reclamation and improvement (ILRI). Wageningen, The Netherlands, pp 30–49

  • Op de Hipt F (2018) Modeling climate and land use change impacts on water resources and soil erosion in the Dano catchment (Burkina Faso, West Africa). University of Bonn, Germany

    Google Scholar 

  • Patel A, Katiyar SK, Prasad V (2016) Performances evaluation of different open source DEM using differential global positioning system (DGPS). Egypt J Remote Sens Space Sci 19:7–16. https://doi.org/10.1016/j.ejrs.2015.12.004

    Article  Google Scholar 

  • Paul D, Mandla VR, Singh T (2017) Quantifying and modeling of stream network using digital elevation models. Ain Shams Eng J 8:311–321. https://doi.org/10.1016/j.asej.2015.09.002

    Article  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Article  Google Scholar 

  • Rodenburg J (2013) Inland valleys: Africa’s future food baskets. In: Wopereis M, Johnson D, Ahmadi N, Tollens E, Jalloh A (eds) Realizing Africa’s rice promise. CAB International, Wallingford, pp 276–293

    Chapter  Google Scholar 

  • Rodenburg J, Zwart SJ, Kiepe P et al (2014) Sustainable rice production in African inland valleys: seizing regional potentials through local approaches. Agric Syst 123:1–11. https://doi.org/10.1016/j.agsy.2013.09.004

    Article  Google Scholar 

  • Salmi T, Määttä A, Pia A et al (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates—the Excel template application MAKESENS. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Sander JZ (2013) Assessing and improving water productivity of irrigated rice systems in Africa. In: Wopereis M, Johnson D, Ahmadi N, Tollens E, Jalloh A (eds) Realizing Africa’s rice promise. CAB International, Wallingford, pp 276–293

    Google Scholar 

  • Seibert J (2000) Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrol Earth Syst Sci 4:215–224. https://doi.org/10.5194/hess-4-215-2000

    Article  Google Scholar 

  • Seibert J, Vis MJP (2012) Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol Earth Syst Sci 16:3315–3325. https://doi.org/10.5194/hess-16-3315-2012

    Article  Google Scholar 

  • Serpantié G (1988) Eléments pour des chois de priotités et de techniques: exemple de la digue filtrante partiellement colmatée de Bidi Gourga. Aménagement des petits bas-fonds Soudano-Sahéliens. Ouagadougou, Burkina Faso, p 22

  • Sintondji LO, Huat J, Dossou-Yovo E et al (2016) Lessons withdrawn from the diversity of inland valleys cultivation at a regional scale: a case study of Mono and Couffo departments in south Benin. Sci Res Essays 11:221–229. https://doi.org/10.5897/SRE2016.6424

    Article  Google Scholar 

  • Totin E, van Mierlo B, Saïdou A et al (2012) Barriers and opportunities for innovation in rice production in the inland valleys of Benin. NJAS Wagening J Life Sci 60:57–66. https://doi.org/10.1016/j.njas.2012.06.001

    Article  Google Scholar 

  • Windmeijer PN, Andriesse W (1993) Inland valleys in West Africa: an agro-ecological characterization of rice-growing environments. ILRI Publication 52, Wageningen, The Netherlands

    Google Scholar 

  • Worou ON, Gaiser T, Saito K et al (2013) Spatial and temporal variation in yield of rainfed lowland rice in inland valley as affected by fertilizer application and bunding in North-West Benin. Agric Water Manag 126:119–124. https://doi.org/10.1016/j.agwat.2013.04.007

    Article  Google Scholar 

  • WRB IUSSWG (2006) World reference base for soil resources, World soil resources reports no. 103. Food & Agriculture Org. ftp://ftp.fao.org/docrep/fao/009/a0510e/a0510e00.pdf, Rom. Accessed 08 May 2014

  • Xiao L-L, Liu H-B, Zhao X-G (2010) Impact of digital elevation model resolution on stream network parameters. IEEE, pp 455–458. https://doi.org/10.1109/ESIAT.2010.5568306

  • Xiong B, Xiong L, Chen J et al (2018) Multiple causes of nonstationarity in the Weihe annual low-flow series. Hydrol Earth Syst Sci 22:1525–1542. https://doi.org/10.5194/hess-22-1525-2018

    Article  Google Scholar 

  • Zwart SJ (2018) Sustainable agricultural development in inland valleys. Presented at the sustainability in the FOOD-WATER-ECOSYSTEM Nexus in Sub Saharan Africa in support of the SDG’s: sustainable wetland use, Kampala, Uganda

Download references

Acknowledgements

The authors are grateful for the financial support provided by the French Ministry of Foreign Affairs and International Development (Grant no. FSP) under the auspices of the AGRICORA and GENERIA initiatives. They thank the German Federal Ministry of Education and Research (BMBF) (Grant no. 01LG1202E) for supporting the WASCAL project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yira Yacouba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yacouba, Y., Aymar, B.Y., Amadou, K. et al. Failure of inland valleys development: a hydrological diagnosis of the Bankandi valley in Burkina Faso. Model. Earth Syst. Environ. 5, 1733–1741 (2019). https://doi.org/10.1007/s40808-019-00628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00628-5

Keywords

Navigation