Skip to main content

Advertisement

Log in

Dietary Regulation of Adult Stem Cells

  • Metabolism and Stem Cells (D Nakada, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Dietary intake is a critical regulator of organismal physiology and health. Tissue homeostasis and regeneration are dependent on adult tissue stem cells that self-renew and differentiate into the specialized cell types. As stem cells respond to cues from their environment, dietary signals and nutrients influence tissue biology by altering the function and activity of adult stem cells. In this review, we highlight recent studies that illustrate how diverse diets such as caloric restriction, fasting, high-fat diets, and ketogenic diets impact stem cell function and their microenvironments.

Recent Findings

Caloric restriction generally exerts positive effects on adult stem cells, notably increasing stem cell functionality in the intestine and skeletal muscle as well as increasing hematopoietic stem cell quiescence. Similarly, fasting confers protection of intestinal, hematopoietic, and neuronal stem cells against injury. High-fat diets induce intestinal stem cell niche independence and stem-like properties in intestinal progenitors, while high-fat diets impair hematopoiesis and neurogenesis.

Summary

Caloric restriction and fasting are generally beneficial to adult stem cell function, while high-fat diets impair stem cell function or create opportunities for tumorigenesis. However, the effects of each diet on stem cell biology are complex and vary greatly between tissues. Given the recent interest in developing dietary interventions or mimetics as therapeutics, further studies, including on ketogenic diets, will be essential to understand how adult stem cells respond to diet-induced signals and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–68.

    Article  CAS  PubMed  Google Scholar 

  2. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  PubMed  Google Scholar 

  3. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  6. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  7. Behrens A, van Deursen JM, Rudolph KL, Schumacher B. Impact of genomic damage and ageing on stem cell function. Nat Cell Biol. 2014;16:201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams PD, Jasper H, Rudolph KL. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell. 2015;16:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mihaylova MM, Sabatini DM, Yilmaz ÖH. Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell. 2014;14:292–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci. 2010;31:89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012;11:390–8.

    Article  PubMed  Google Scholar 

  13. Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–27.

  14. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–9.

    Article  CAS  PubMed  Google Scholar 

  15. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006;17:431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.

    Article  PubMed  Google Scholar 

  18. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.

    Article  CAS  PubMed  Google Scholar 

  19. • Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, Hoerr V, et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med. 2016;213:535–53. This study highlights the complexity of CR on stem cell biology, as CR exerts both beneficial effects on HSC quiescence and detrimental effects on lymphopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Cheng C-W, Adams GB, Perin L, Wei M, Zhou X, Lam BS, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014;14:810–23. This study presents direct evidence that a fasting intervention beneficially affects HSCs in mice and hematopoietic regeneration in humans when undergoing chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015;22:886–94.

    Article  CAS  PubMed  Google Scholar 

  22. van den Berg SM, Seijkens TTP, Kusters PJH, Beckers L, den Toom M, Smeets E, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J Off Publ Fed Am Soc Exp Biol. 2016;30:1779–88.

    Google Scholar 

  23. Singer K, DelProposto J, Morris DL, Zamarron B, Mergian T, Maley N, et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol. Metab. 2014;3:664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature [Internet]. 2012 [cited 2014 Mar 15]; Available from: http://www.nature.com/doifinder/10.1038/nature11163. This study uncovers the molecular mechanisms by which CR enhances ISC function non-cell autonomously, specifically through mTORC1 signaling in the Paneth niche cells.

  25. Richmond CA, Shah MS, Deary LT, Trotier DC, Thomas H, Ambruzs DM, et al. Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Rep. 2015;13:2403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. •• Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong S-J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53–8. Enhanced PPAR-delta activity increases ISC and progenitor function as well as the potential to form adenomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Li J, Tang Y, Cai D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999–1012. NSC impairment and depletion is instigated with increased pro-inflammatory IKKβ/NF-κB activity induced by a HFD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cerletti M, Jang YC, Finley LWS, Haigis MC, Wagers AJ. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell. 2012;10:515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes. 2016;65:188–200.

    CAS  PubMed  Google Scholar 

  30. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5:3557.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. 2008;18:455–71.

    Article  CAS  Google Scholar 

  32. Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Igarashi M, Guarente L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell. 2016;166:436–50.

    Article  CAS  PubMed  Google Scholar 

  34. Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gardner EM. Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci. 2005;60:688–94.

    Article  PubMed  Google Scholar 

  36. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene. 2011;30:3305–16.

    Article  CAS  PubMed  Google Scholar 

  38. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging. 2009;1:988–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tinkum KL, Stemler KM, White LS, Loza AJ, Jeter-Jones S, Michalski BM, et al. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival. Proc Natl Acad Sci U S A. 2015;112:E7148–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Duan W, Long JM, Ingram DK, Mattson MP. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci MN. 2000;15:99–108.

    Article  CAS  PubMed  Google Scholar 

  41. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem. 2002;80:539–47.

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82:1367–75.

    Article  CAS  PubMed  Google Scholar 

  43. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22:86–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol - Endocrinol Metab. 2015;309:E691–714.

    Article  PubMed  Google Scholar 

  45. Singla P. Metabolic effects of obesity: a review. World J Diabetes. 2010;1:76.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hursting SD. Obesity, energy balance, and cancer: a mechanistic perspective. In: Zappia V, Panico S, Russo GL, Budillon A, Della Ragione F, editors. Adv. Nutr. Cancer [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 [cited 2016 Oct 27]. p. 21–33. Available from: http://link.springer.com/10.1007/978-3-642-38007-5_2.

  47. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  CAS  PubMed  Google Scholar 

  48. Jung U, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:6184–223.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Font-Burgada J, Sun B, Karin M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 2016;23:48–62.

    Article  CAS  PubMed  Google Scholar 

  50. Mah AT, Van Landeghem L, Gavin HE, Magness ST, Lund PK. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology. 2014;155:3302–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. DeClercq V, McMurray DN, Chapkin RS. Obesity promotes colonic stem cell expansion during cancer initiation. Cancer Lett. 2015;369:336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cangelosi AL, Yilmaz ÖH. High fat diet and stem cells: linking diet to intestinal tumor formation. Cell Cycle Georget Tex. 2016;15:1657–8.

    Article  CAS  Google Scholar 

  53. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16:2533–47.

    Article  Google Scholar 

  54. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482:235–9.

    Article  CAS  PubMed  Google Scholar 

  56. McNay DEG, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest. 2012;122:142–52.

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Tang Y, Purkayastha S, Yan J, Cai D. Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Mol Metab. 2014;3:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15:700–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nascimento LFR, Souza GFP, Morari J, Barbosa GO, Solon C, Moura RF, et al. N-3 fatty acids induce neurogenesis of predominantly POMC-expressing cells in the hypothalamus. Diabetes. 2016;65:673–86.

    Article  CAS  PubMed  Google Scholar 

  60. Vignaud A, Ramond F, Hourdé C, Keller A, Butler-Browne G, Ferry A. Diabetes provides an unfavorable environment for muscle mass and function after muscle injury in mice. Pathobiol J Immunopathol Mol Cell Biol. 2007;74:291–300.

    Article  CAS  Google Scholar 

  61. Balietti M, Casoli T, Di Stefano G, Giorgetti B, Aicardi G, Fattoretti P. Ketogenic diets: an historical antiepileptic therapy with promising potentialities for the aging brain. Ageing Res Rev. 2010;9:273–9.

    Article  CAS  PubMed  Google Scholar 

  62. Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 2014;55:2211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yancy WS. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med. 2004;140:769.

    Article  PubMed  Google Scholar 

  64. Dashti HM, Mathew TC, Khadada M, Al-Mousawi M, Talib H, Asfar SK, et al. Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem. 2007;302:249–56.

    Article  CAS  PubMed  Google Scholar 

  65. Westman EC, Yancy WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab. 2008;5:36.

    Article  Google Scholar 

  66. Robertson LT, Mitchell JR. Benefits of short-term dietary restriction in mammals. Exp Gerontol. 2013;48:1043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parillo M, Rivellese AA, Ciardullo AV, Capaldo B, Giacco A, Genovese S, et al. A high-monounsaturated-fat/low-carbohydrate diet improves peripheral insulin sensitivity in non-insulin-dependent diabetic patients. Metabolism. 1992;41:1373–8.

    Article  CAS  PubMed  Google Scholar 

  68. Gannon MC, Nuttall FQ. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes. 2004;53:2375–82.

    Article  CAS  PubMed  Google Scholar 

  69. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.

    Article  PubMed  Google Scholar 

  70. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18:25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  72. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harper JM, Leathers CW, Austad SN. Does caloric restriction extend life in wild mice? Aging Cell. 2006;5:441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ertl RP, Chen J, Astle CM, Duffy TM, Harrison DE. Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood. 2008;111:1709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer H. Yilmaz.

Ethics declarations

Conflict of Interest

Miyeko D. Mana, Elaine Yih-Shuen Kuo, and Ömer H. Yilmaz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Miyeko D. Mana and Elaine Yih-Shuen Kuo contributed equally to this work.

This article is part of the Topical Collection on Metabolism and Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mana, M.D., Kuo, E.YS. & Yilmaz, Ö.H. Dietary Regulation of Adult Stem Cells. Curr Stem Cell Rep 3, 1–8 (2017). https://doi.org/10.1007/s40778-017-0072-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0072-x

Keywords

Navigation