Skip to main content
Log in

Recent Developments and Trends in Sustainable and Functional Wood Coatings

  • Wood Structure and Function (A Koubaa, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the last decade, a transformation has occurred in the coating industry. While, in the past, the industry was primarily focused on reducing volatile organic compounds (VOC) and formaldehyde emissions, it is now circularity driving this industry. In this paper, we present several advances that have been made, as well as key trends in the wood coatings industry.

Recent Findings

Replacing petroleum-based chemicals in coating formulations is at the heart of current research. In recent years, various biosourced molecules from animal and plant sources have been the subject of many studies aiming to incorporate them in coatings. Despite all the progress made in the last few years, coating producers are still facing many challenges regarding the availability and quality of biobased raw materials and balancing performance versus cost.

Summary

While most of the sustainable coating solutions discussed in this review focus on well-known and widely accepted coating chemistries and technologies (water-based and photopolymerizable polyurethanes (PUs), acrylics, and epoxies), we also present new technologies that are expected to gain significant importance in the next few years such as layer-by-layer (LBL), polyelectrolyte complexes, and isocyanate-free PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wood LG. Well-being and performance: the human and organizational benefits of wood buildings [Internet]. Forestry Innovat Invest. 2020.  Available from: https://www.naturallywood.com/wp-content/uploads/wood-well-being-and-performance_report_graham-lowe.pdf. Accessed 2 Aug 2023.

  2. Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2010;39:301–12.

    Article  CAS  Google Scholar 

  3. Challener C. An update on sustainability in the coatings industry. JCT CoatTech. 2018;15:22–8.

    Google Scholar 

  4. Ulker OC, Ulker O, Hiziroglu S. Volatile organic compounds (VOCs) emitted from coated furniture units. Coatings Mdpi. 2021;11:806.

    Article  CAS  Google Scholar 

  5. Centre (JRC) ECA (ECHA) and EFSA (EFSA) with the technical support of the JR, Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2012;16:e05311 Wiley Online Library.

    Google Scholar 

  6. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess. 2006;11:80–5.

    Article  Google Scholar 

  7. ISO E. 14044: Environmental management, life cycle assessment, requirements and guidelines [Internet], DIN Deutsches Institut für Normung e. V. Beuth Verlag, Berlin; 2006.  Available from: https://www.iso.org/fr/standard/38498.html. Accessed 2 Aug 2023.

  8. EN 15804:2012+A2:2019 - Sustainability of construction works-Environmental product declarations - Core rules for the product category of construction products [Internet]. iTeh Standards. Available from: https://standards.iteh.ai/catalog/standards/cen/c98127b4-8dc2-48a4-9338-3e1366b16669/en-15804-2012a2-2019. Accessed 29 Apr 2023.

  9. ISO I. 21930: 2017-Sustainability in buildings and civil engineering works–core rules for environmental product declarations of construction products and services [Internet]. Geneva (Switzerland): International Organization for Standardization. 2017. Available from: https://www.iso.org/standard/61694.html. Accessed 2 Aug 2023.

  10. Montazeri M, Eckelman MJ. Life cycle assessment of UV-curable bio-based wood flooring coatings. J Clean Prod Elsevier. 2018;192:932–9.

    Article  CAS  Google Scholar 

  11. Schmidt JH, Christensen P, Christensen TS. Assessing the land use implications of biodiesel use from an LCA perspective. J Land Use Sci Taylor Francis. 2009;4:35–52.

    Article  Google Scholar 

  12. Life-cycle assessment of architectural coatings [Internet]. American Coatings Association. [cited 2023 May 1]. Available from: https://www.paint.org/coatingstech-magazine/articles/life-cycle-assessment-of-architectural-coatings/

  13. Strömberg L. Integrated life-cycle design of coatings on exterior wood: part 2: life-cycle assessment. Surface Coat Int Part B-Coat Trans. 2004;87(3):211–20.

    Article  Google Scholar 

  14. Gesthusien. Bio-based coatings overview: increasing activities [Internet]. European Coatings. 2020. Available from: https://www.european-coatings.com/articles/archiv/bio_based-coatings-overview-increasing-activities. Accessed 6 Oct 2022. This reference explains the steps taken by some countries to encourage the use of biosourced and recycled raw materials to design coatings

  15. Antonelli F, Bartolini M, Plissonnier M-L, Esposito A, Galotta G, Ricci S, et al. Essential oils as alternative biocides for the preservation of waterlogged archaeological wood. Microorganisms MDPI. 2020;8:2015.

    Article  CAS  Google Scholar 

  16. Huard L, Muehlethaler C. Recycled paints: are they as variable as they seem? Forensic Science International. Elsevier. 2022;340:111476.

    Google Scholar 

  17. Karlsson MC, Álvarez-Asencio R, Bordes R, Larsson A, Taylor P, Steenari B-M. Characterization of paint formulated using secondary TiO2 pigments recovered from waste paint. J Coat Technol Res Springer. 2019;16:607–14.

    Article  CAS  Google Scholar 

  18. Poth, Schwalm, Schwartz. Acrylic Resin [Internet]. European Coatings Tech Files. 2011. Available from: https://docplayer.net/142410641-European-coatings-tech-filesu-poth-r-schwalm-m-schwartz-acrylic-resins-ebook.html. Accessed 2 Aug 2013.

  19. Rais A. Sumitomo chemical to build pilot plant for chemical recycling of PMMA [Internet]. Process Worldwide. 2021. Available from: https://www.processworldwide.com/sumitomo-chemical-to-build-pilot-plant-for-chemical-recycling-of-pmma-a-1051090/. Accessed 29 Apr 2023

  20. Ridho MR, Agustiany EA, Rahmi Dn M, Madyaratri EW, Ghozali M, Restu WK, et al. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv Mater Sci Eng. 2022;2022:1363481.

  21. Demuner IF, Colodette JL, Demuner AJ, Jardim CM. Biorefinery review: wide-reaching products through kraft lignin. BioResources. 2019;14:7543–81.

    Article  Google Scholar 

  22. Liu L-Y, Patankar SC, Chandra RP, Sathitsuksanoh N, Saddler JN, Renneckar S. Valorization of bark using ethanol–water organosolv treatment: isolation and characterization of crude lignin. ACS Sustain Chem Eng ACS Publ. 2020;8:4745–54.

    Article  CAS  Google Scholar 

  23. Tribot A. Valorisation de la ”partie lignine” des effluents de prétraitement de biomasse forestière : élaboration et caractérisation d’agrocomposites [Thesis, Internet]. Université Clermont Auvergne; 2020. Available from: https://theses.hal.science/tel-03048262v2. Accessed 2 Aug 2023.

  24. de Haro JC, Allegretti C, Smit AT, Turri S, D’Arrigo P, Griffini G. Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection. ACS Sustain Chem Eng ACS Publ. 2019;7:11700–11. This study shows that the design of PU coatings, based on different technical non-chemically modified lignins, is a promising strategy for the development of high-performance thermoset systems. It is also mentioned that the physicochemical properties of PU coatings can be adjusted according to the lignin precursor used, thus opening the way to the production of biobased PU coatings with customized characteristics.

    Article  Google Scholar 

  25. Wang Y, Zhang Y, Liu B, Zhao Q, Qi Y, Wang Y, et al. A novel phosphorus-containing lignin-based flame retardant and its application in polyurethane. Composites Commun Elsevier. 2020;21:100382.

    Article  Google Scholar 

  26. Li H, Liang Y, Li P, He C. Conversion of biomass lignin to high-value polyurethane: a review. J Bioresource Bioprod Elsevier. 2020;5:163–79.

    Article  CAS  Google Scholar 

  27. Bergamasco S, Tamantini S, Zikeli F, Vinciguerra V, ScarasciaMugnozza G, Romagnoli M. Synthesis and characterizations of eco-friendly organosolv lignin-based polyurethane coating films for the coating industry. Polymers MDPI. 2022;14:416.

    Article  CAS  Google Scholar 

  28. Kumar S, Mukherjee A, Dutta J. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol. 2020;97:196–209.

    Article  CAS  Google Scholar 

  29. Zhao W, Yu D, Xia W. Vacuum impregnation of chitosan coating combined with water-soluble polyphenol extracts on sensory, physical state, microbiota composition and quality of refrigerated grass carp slices. Int J Biol Macromol. 2021;193:847–55.

    Article  CAS  Google Scholar 

  30. Sanchez-Salvador JL, Balea A, Monte MC, Negro C, Blanco A. Chitosan grafted/cross-linked with biodegradable polymers: a review. Int J Biol Macromol. 2021;178:325–43.

    Article  CAS  Google Scholar 

  31. Esfandiar N, Elmi F, Omidzahir S. Study of the structural properties and degradation of coated wood with polydopamine/hydroxyapatite/chitosan hybrid nanocomposite in seawater. Cellulose. 2020;27:7779–90.

    Article  CAS  Google Scholar 

  32. Silva-Castro I, Casados-Sanz M, Alonso-Cortés A, Martín-Ramos P, Martín-Gil J, Acuña-Rello L. Chitosan-based coatings to prevent the decay of Populus spp. wood caused by Trametes versicolor. Coatings. 2018;8:415.

    Article  Google Scholar 

  33. Andok A, Jesuet MSG. Biodegradable chitosan coating for wood protection. IOP Conf Ser : Earth Environ Sci. 2022;1053:012036.

  34. Manickavasagan A, Lim L-T, Ali A. Plant protein foods. Springer Cham; 2022.

  35. Feng B, Wang D, Li Y, Qian J, Yu C, Wang M, et al. Mechanical properties of a soy protein isolate–grafted–acrylate (SGA) copolymer used for wood coatings Polymers. Multidisc Dig Publish Instit. 2020;12:1137.

    CAS  Google Scholar 

  36. Leong WI, Lo OLI, Cheng FT, Cheong WM, Seak LCU. Using recombinant adhesive proteins as durable and green flame-retardant coatings. Synth Syst Biotechnol. 2021;6:369–76.

    Article  CAS  Google Scholar 

  37. Vothi H, Nguyen C, Pham LH, Hoang D, Kim J. Novel nitrogen–phosphorus flame retardant based on phosphonamidate: Thermal stability and flame retardancy. ACS Omega ACS Publ. 2019;4:17791–7.

    Article  CAS  Google Scholar 

  38. Uddin M, Kiviranta K, Suvanto S, Alvila L, Leskinen J, Lappalainen R, et al. Casein-magnesium composite as an intumescent fire retardant coating for wood. Fire Saf J. 2020;112:102943.

    Article  CAS  Google Scholar 

  39. Allasia M, Aguirre M, Gugliotta LM, Minari RJ, Leiza JR. High biobased content waterborne latexes stabilized with casein. Prog Org Coat. 2022;168:106870.

    Article  CAS  Google Scholar 

  40. Raychura AJ, Jauhari S, Dholakiya BZ. Development of wood protective polyurethane coatings from mahua oil-based polyetheramide polyol: a renewable approach. Soft Mater Taylor Francis. 2018;16:209–19.

    Article  CAS  Google Scholar 

  41. Raychura AJ, Jauhari S, Patel KI, Dholakiya BZ. A renewable approach toward the development of mahua oil-based wood protective polyurethane coatings: synthesis and performance evaluation. J Appl Polymer Sci. 2018;135:46722 Wiley Online Library.

    Article  Google Scholar 

  42. Llorente O, Barquero A, Paulis M, Leiza JR. Challenges to incorporate high contents of bio-based isobornyl methacrylate (IBOMA) into waterborne coatings. Prog Org Coat. 2022;172:107137.

    Article  CAS  Google Scholar 

  43. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD. Vegetable oil based polyurethane coatings–a sustainable approach: a review. Progress Organic Coatings. 2021;156:106267.

    Article  CAS  Google Scholar 

  44. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, et al. Nanocellulose: from fundamentals to advanced applications. Front Chem Front Media SA. 2020;8:392.

    Article  CAS  Google Scholar 

  45. Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, et al. A review on the emerging applications of nano- cellulose as advanced coatings. Carbohydr Polym. 2022; 282, 119123. This paper relates the importance of nanocellulose as an additive in coatings and its use in the following fields: bio-medical, green electronics, food packaging and as an anti-fouling. The paper discusses these aspects of nanocellulose-based coatings as well as their challenges and prospects

  46. Pacheco CM, Cecilia BA, Reyes G, Oviedo C, Fernández-Pérez A, Elso M, et al. Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood. Mater Today Commu. 2021;29:102990.

    Article  CAS  Google Scholar 

  47. Hochmańska-Kaniewska P, Janiszewska D, Oleszek T. Enhancement of the properties of acrylic wood coatings with the use of biopolymers. Progress Organic Coatings. 2022;162:106522.

    Article  Google Scholar 

  48. Kong L, Xu D, He Z, Wang F, Gui S, Fan J, et al. Nanocellulose-reinforced polyurethane for waterborne wood coating. Molecules MDPI. 2019;24:3151.

    Article  CAS  Google Scholar 

  49. Norrrahim MNF, Nurazzi NM, Jenol MA, Farid MAA, Janudin N, Ujang FA, et al. Emerging development of nanocellulose as an antimicrobial material: an overview. Mater Adv Royal Soc Chem. 2021;2:3538–51.

    CAS  Google Scholar 

  50. Thompson L, Azadmanjiri J, Nikzad M, Sbarski I, Wang J, Yu A. Cellulose nanocrystals: production, functionalization and advanced applications. Rev Adv Mater Sci De Gruyter Open Access. 2019;58:1–16.

    Google Scholar 

  51. Kluge M, Veigel S, Pinkl S, Henniges U, Zollfrank C, Rössler A, et al. Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films. Wood Sci Technol Springer. 2017;51:601–13.

    Article  CAS  Google Scholar 

  52. Soidinsalo, Holtan, Moosavifar. Microfibrillated cellulose: a novel and renewable multifunctional additive for waterborne coatings [Internet]. Coatings World. 2019. Available from: https://www.coatingsworld.com/issues/2019-06-01/view_technical-papers/microfibrillated-cellulose-a-novel-and-renewable-multifunctional-additive-for-waterborne-coatings#:~:text=Microfibrillated%20cellulose%20(MFC)%20is%20a,rheology%2C%20stabilization%20and%20surface%20properties. Accessed 2 Aug 2023.

  53. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng ACS Publ. 2018;6:2807–28.

    Article  CAS  Google Scholar 

  54. Kobeticova K, Böhm M, Ďurišová K, Nabelkova J, Černý R. Chitin-caffeine models in biocidal wood coatings. In: International Conference of Chemical Technology 2021 – Book of Proceedings; 2022.

  55. Li S, Wang X, Xu M, Liu L, Wang W, Gao S, et al. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood. Polymers Adv Technol. 2021;32:4805–14 Wiley Online Library.

    Article  CAS  Google Scholar 

  56. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromole Elsevier. 2018;120:1181–9.

    Article  Google Scholar 

  57. Mikame K, Ohashi Y, Naito Y, Nishimura H, Katahira M, Sugawara S, et al. Natural organic ultraviolet absorbers from lignin. ACS Sustain Chem Eng ACS Publ. 2021;9:16651–8.

    Article  CAS  Google Scholar 

  58. Zhang Y, Naebe M. Lignin: a review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain Chem Eng ACS Publ. 2021;9:1427–42.

    Article  CAS  Google Scholar 

  59. Sadeghifar H, Ragauskas A. Lignin as a UV light blocker—a review. Polymers MDPI. 2020;12:1134.

    Article  CAS  Google Scholar 

  60. Bahmani M, Schmidt O. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas Ciencia y Tecnología SciELO Chile. 2018;20:325–32.

    CAS  Google Scholar 

  61. Šimůnková K, Hýsek Š, Reinprecht L, Šobotník J, Lišková T, Pánek M. Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Sci Rep Nat Publish Group. 2022;12:1–10.

    Google Scholar 

  62. Kwaśniewska-Sip P, Cofta G, Nowak PB. Resistance of fungal growth on Scots pine treated with caffeine. Int Biodeterior Biodegrad Elsevier. 2018;132:178–84.

    Article  Google Scholar 

  63. Oberle A, Paschová Z, Bak M, Gryc V. Beech wood impregnation with hydrolyzed wattle tannin. Bioresources. 2021;16:2548–56.

  64. Tomak ED, Ustaomer D, Yildiz S, Pesman E. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement. 2014;53:30–9.

    Article  Google Scholar 

  65. Ermeydan MA. A natural flavonoid, chrysin, improving wood properties via impregnation. BioResources. 2019;14:2133–43.

    Article  CAS  Google Scholar 

  66. Woźniak M, Kwaśniewska-Sip P, Waśkiewicz A, Cofta G, Ratajczak I. The possibility of propolis extract application in wood protection. Forests MDPI. 2020;11:465.

    Article  Google Scholar 

  67. Teacă C-A, Roşu D, Mustaţă F, Rusu T, Roşu L, Roşca I, et al. Natural bio-based products for wood coating and protection against degradation: a review. BioRes. 2019;14:4873–901. This article explains the use of biobased coatings to protect wood substrates. It introduces the natural products that can be used to protect wood, such as extractives from wood and plants with biocides properties, plant oils, waxes, resins, and biopolymers

    Article  Google Scholar 

  68. Hodges TW, Kemp LK, Mcinnis BM, Wilhelm KL, Hurt JD, Mcdaniel S, et al. Proteins and peptides as replacements for traditional organic preservatives: Part I [Internet]. 2022. Available from: https://www.paint.org/coatingstech-magazine/articles/proteins-and-peptides-as-replacements-for-traditional-organic-preservatives-part-i/. Accessed 2 Aug 2023.

  69. McDaniel S, McInnis BM, Hurt JD, Kemp LK, Hodges TW. Biotechnology meets coatings preservation. Coat. World. 2019;12:33–42.

    Google Scholar 

  70. Farjana SH, Huda N, Mahmud MP. Life-cycle environmental impact assessment of mineral industries. IOP Conf Ser : Mater Sci Eng. 2018;351:012016.

  71. BioPowder [Internet]. 2021. Available from: https://www.biopowder.com/en/. Accessed 7 Oct 2022.

  72. Tusso-Pinzón RA, Castillo-Landero A, Matallana-Pérez LG, Jiménez-Gutiérrez A. Intensified synthesis for ethyl lactate production including economic, sustainability and inherent safety criteria. Chem Eng Process-Process Intensif. 2020;154:108041.

    Article  Google Scholar 

  73. Román-Ramírez LA, Powders M, McKeown P, Jones MD, Wood J. Ethyl lactate production from the catalytic depolymerisation of post-consumer poly (lactic acid). J Polymers Environ. 2020;28:2956–64.

    Article  Google Scholar 

  74. Nanda B, Sailaja M, Mohapatra P, Pradhan RK, Nanda BB. Green solvents: a suitable alternative for sustainable chemistry. Mater Today: Proceed Elsevier. 2021;47:1234–40.

    CAS  Google Scholar 

  75. Guzman Barrera NI. Eco-compatible syntheses of bio-based solvents for the paint and coating industry [Thesis, Internet]. Institut National Polytechnique de Toulouse. 2018. Available from: https://oatao.univ-toulouse.fr/25250/. Accessed 2 Aug 2023.

  76. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, et al. Autonomic healing of polymer composites. Nat Nat Publish Group. 2001;409:794–7.

    CAS  Google Scholar 

  77. Yan X, Tao Y, Chang Y. Effect of shellac waterborne coating microcapsules on the optical, mechanical and self-healing properties of waterborne primer on Tilia europaea L. wood. Coatings MDPI. 2021;11:785.

    Article  CAS  Google Scholar 

  78. Peng W, Yan X. Preparation of tung oil microcapsule and its effect on wood surface coating. Polymers MDPI. 2022;14:1536.

    Article  CAS  Google Scholar 

  79. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, et al. A thermally re-mendable cross-linked polymeric material. Sci Am Assoc Adv Sci. 2002;95:1698–702.

    Google Scholar 

  80. Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links. Macromole ACS Publ. 2011;44:2536–41.

    Article  CAS  Google Scholar 

  81. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nat Nat Publish Group. 2008;451:977–80.

    CAS  Google Scholar 

  82. Paquet C, Schmitt T, Klemberg-Sapieha JE, Morin J-F, Landry V. Self-healing UV curable acrylate coatings for wood finishing system, part 1: impact of the formulation on self-healing efficiency. Coatings MDPI. 2020;10:770.

    Article  CAS  Google Scholar 

  83. Sun F-C, Fu J-H, Peng Y-X, Jiao X-M, Liu H, Du F-P, et al. Dual-functional intumescent fire-retardant/self-healing water-based plywood coatings. Progress Organic Coat. 2021;154:106187.

    Article  CAS  Google Scholar 

  84. Zhang L, Huang Y, Sun P, Hai Y, Jiang S. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings. Soft Matter Royal Soc Chem. 2021;17:5231–9.

    Article  CAS  Google Scholar 

  85. Ou R, Eberts K, Skandan G, Lee SP, Iezzi R, Eberly DE. Self-healing polymer nanocomposite coatings for use on surfaces made of wood. US Patent 8664298B1. 2014.

  86. Cho W, Shields JR, Dubrulle L, Wakeman K, Bhattarai A, Zammarano M, et al. Ion–complexed chitosan formulations as effective fire-retardant coatings for wood substrates. Polymer Degra Stab. 2022;197:109870.

    Article  CAS  Google Scholar 

  87. Traoré B, Brancheriau L, Perré P, Stevanovic T, Diouf P. Acoustic quality of vène wood (Pterocarpus erinaceus Poir) for xylophone instrument manufacture in Mali. Ann For Sci. 2010;67:815–815.

    Article  Google Scholar 

  88. Zhou L, Fu Y. Flame-retardant wood composites based on immobilizing with chitosan/sodium phytate/nano-TiO2-ZnO coatings via layer-by-layer self-assembly. Coat Multidisc Dig Publish Instit. 2020;10:296.

    CAS  Google Scholar 

  89. Yan Y, Dong S, Jiang H, Hou B, Wang Z, Jin C. Efficient and durable flame-retardant coatings on wood fabricated by chitosan, graphene oxide, and ammonium polyphosphate ternary complexes via a layer-by-layer self-assembly approach. ACS Omega ACS Publ. 2022;7:29369–79.

    Article  CAS  Google Scholar 

  90. Ma X, Chen J, Zhu J, Yan N. Lignin-based polyurethane: recent advances and future perspectives. Macromole Rapid Commu. 2021;42:2000492 Wiley Online Library.

    Article  CAS  Google Scholar 

  91. Wang T, Li L, Cao Y, Wang Q, Guo C. Preparation and flame retardancy of castor oil based UV-cured flame retardant coating containing P/Si/S on wood surface. Industrial Crops Prod Elsevier. 2019;130:562–70.

    Article  CAS  Google Scholar 

  92. Jaramillo AF, Díaz-Gómez A, Ramirez J, Berrio ME, Cornejo V, Rojas D, et al. Eco-friendly fire-resistant coatings containing dihydrogen ammonium phosphate microcapsules and tannins. Coatings MDPI. 2021;11:280.

    Article  CAS  Google Scholar 

  93. Solis-Pomar F, Díaz-Gómez A, Berrío ME, Ramírez J, Jaramillo AF, Fernández K, et al. A dual active-passive coating with intumescent and fire-retardant properties based on high molecular weight tannins. Coatings MDPI. 2021;11:460. This paper demonstrated that tannins obtained from the waste of Pinus radiata bark are beneficial additives in the formulation of fire-resistant coatings. The combination of intumescent-fire retardant layers in a coating scheme showed better fire resistance results and improved mechanical properties compared to commercial products.

    Article  CAS  Google Scholar 

  94. Price EJ, Covello J, Paul R, Wnek GE. Tannic acid based super-intumescent coatings for prolonged fire protection of cardboard and wood. SPE Polymers Wiley Online Library. 2021;2:153–68.

    CAS  Google Scholar 

  95. Huang Y, Ma T, Wang Q, Guo C. Synthesis of biobased flame-retardant carboxylic acid curing agent and application in wood surface coating. ACS Sustain Chem Eng ACS Publ. 2019;7:14727–38.

    Article  CAS  Google Scholar 

  96. Ghasemlou M, Daver F, Ivanova EP, Adhikari B. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem A Royal Soc Chem. 2019;7:16643–70.

    Article  CAS  Google Scholar 

  97. Yue D, Lin S, Cao M, Lin W, Zhang X. Fabrication of transparent and durable superhydrophobic polysiloxane/SiO2 coating on the wood surface. Cellulose. 2021;28:3745–58.

    Article  CAS  Google Scholar 

  98. Wang Q, Sun G, Tong Q, Yang W, Hao W. Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: preparation methods and applications. Chem Eng J. 2021;426:130829.

    Article  CAS  Google Scholar 

  99. Yang H, Wang J, Zhao P, Mu H, Qi D. UV-assisted multiscale superhydrophobic wood resisting surface contamination and failure. ACS Omega Am Chem Soc. 2021;6:26732–40.

    Article  CAS  Google Scholar 

  100. Cui M, Qing Y, Yang Y, Long C, Liu C. Nanofunctionalized composite-crosslinked epoxy resin for eco-friendly and robust superhydrophobic coating against contaminants. Colloids Surf, A. 2022;633:127914.

    Article  CAS  Google Scholar 

  101. Olson E, Blisko J, Du C, Liu Y, Li Y, Thurber H, et al. Biobased superhydrophobic coating enabled by nanoparticle assembly. Nanoscale Adv Royal Soc Chem. 2021;3:4037–47.

    Article  CAS  Google Scholar 

  102. Yang J, Li H, Yi Z, Liao M, Qin Z. Stable superhydrophobic wood surface constracting by KH580 and nano-Al2O3 on polydopamine coating with two process methods. Colloids Surf, A. 2022;637:128219.

    Article  CAS  Google Scholar 

  103. Shang Q, Chen J, Liu C, Hu Y, Hu L, Yang X, et al. Facile fabrication of environmentally friendly bio-based superhydrophobic surfaces via UV-polymerization for self-cleaning and high efficient oil/water separation. Prog Org Coat. 2019;137:105346.

    Article  CAS  Google Scholar 

  104. Arminger B, Gindl-Altmutter W, Keckes J, Hansmann C. Facile preparation of superhydrophobic wood surfaces via spraying of aqueous alkyl ketene dimer dispersions. RSC adv Royal Soc Chem. 2019;9:24357–67.

    Article  CAS  Google Scholar 

  105. Arminger B, Gindl-Altmutter W, Hansmann C. Efficient recovery of superhydrophobic wax surfaces on solid wood. Eur J Wood Wood Prod. 2022;80:345–53.

    Article  CAS  Google Scholar 

  106. Saji VS. Wax-based artificial superhydrophobic surfaces and coatings. Colloids Surface A Physicochem Eng Aspects. 2020;602:125132.

    Article  CAS  Google Scholar 

  107. Janesch J, Arminger B, Gindl-Altmutter W, Hansmann C. Superhydrophobic coatings on wood made of plant oil and natural wax. Prog Org Coat. 2020;148:105891.

    Article  CAS  Google Scholar 

Download references

Funding

The Natural Sciences and Engineering Research Council of Canada (NSERC) funded this research through the IRC program and the industrial partners of the NSERC/Canlak Industrial Research Chair in Interior Wood-Products Finishes (CRIF): Canlak, Boa-Franc, EMCO-Inortech, and Canadel (Grant No. IRCPJ 514918–16) as well as the IRC and CRD programs and industrial partners of the NSERC Industrial Chair on Eco-responsible Wood Construction (CIRCERB) (IRCPJ 461745–18 and RDCPJ 524504–18).

Author information

Authors and Affiliations

Authors

Contributions

V. Landry, G. Boivin, D. Schorr, M. Mottoul, A. Mary, L. Abid, M. Carrère and B. Laratte wrote the main manuscript text, M. Mottoul prepared all the figures, A. Mary prepared the table, M. Carrère prepared the references. All authors reviewed the manuscript.

Corresponding author

Correspondence to Véronic Landry.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

Véronic Landry, Diane Schorr, Gabrielle Boivin, Alex Mary, Liza Abid, Marie Mottoul, Maylis Carrère, and Bertrand Laratte declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, V., Boivin, G., Schorr, D. et al. Recent Developments and Trends in Sustainable and Functional Wood Coatings. Curr. For. Rep. 9, 319–331 (2023). https://doi.org/10.1007/s40725-023-00195-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00195-0

Keywords

Navigation