Skip to main content
Log in

The invisibility via anomalous localized resonance of a source for electromagnetic waves

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We investigate the invisibility via anomalous localized resonance of a general source in anisotropic media for electromagnetic waves. To this end, we first introduce the concept of doubly complementary media in the electromagnetic setting. These are media consisting of negative-index metamaterials in a shell and positive-index materials in its complement for which the shell is complementary to a part of the core and a part of the exterior of the core–shell structure. We then provide criteria for establishing the invisibility of a source in these media. We show that (i) a source is invisible if the power is blown up; (ii) a source is invisible if it is sufficiently close to the plasmonic shell structure, and it is visible if it is far from this plasmonic structure; (iii) if the plasmonic structure is complementary to an annulus of constant isotropic medium, there is a critical length that characterizes the cloaking phenomena, as first observed in the two-dimensional acoustic quasistatic setting by Milton and Nicorovici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper, the notation \(D \Subset \Omega \) means \({\bar{D}} \subset \Omega \) for two subsets D and \(\Omega \) of \(\mathbb {R}^3\).

  2. Here, \(\nu \) and \(\nu '\) denote the outward unit normal vector on \(\partial \Omega \) and \(\partial \Omega '\).

References

  1. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25, 123004 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alonso, A., Valli, A.: Some remarks on the characterization of the space of tangential traces of \(H(\text{ rot }; \Omega )\) and the construction of an extension operator. Manuscr. Math. 89, 159–178 (1996)

    Article  MathSciNet  Google Scholar 

  3. Alu, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 95, 106623 (2005)

    Google Scholar 

  4. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.W.: Anomalous localized resonance using a folded geometry in three dimensions. Proc. R. Soc. Lond. Ser. A 469, 20130048 (2013)

    Article  Google Scholar 

  5. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.W.: Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Rational Mech. Anal. 218, 667–692 (2013)

    Article  Google Scholar 

  6. Ando, K., Kang, H., Liu, H.: Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76, 731–749 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ball, J., Capdeboscq, Y., Tsering-Xiao, B.: On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22, 1250036 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bouchitté, G., Bourel, C., Felbacq, D.: Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials. Arch. Ration. Mech. Anal. 225, 1233–1277 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bouchitté, G., Schweizer, B.: Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Math. 63, 437–463 (2010)

    Article  MathSciNet  Google Scholar 

  10. Buffa, A., Costabel, M., Sheen, D.: On traces for \(H(\text{ curl },\Omega )\) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  Google Scholar 

  11. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 98, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  12. Hadamard, J.: Sur les fonction entières. Bull. Soc. Math. France 24, 94–96 (1896)

    MATH  Google Scholar 

  13. Kettunen, H., Lassas, M., Ola, P.: On absence and existence of the anomalous localized resonance without the quasi-static approximation. SIAM J. Appl. Math. 78, 609–628 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kirsch, A., Hettlich, F.: The Mathematical Theory of Time-Harmonic Maxwell’s Equations, Expansion, Integral, and Variational Methods. Springer, Berlin (2015)

    Book  Google Scholar 

  15. Kohn, R.V., Lu, J., Schweizer, B., Weinstein, M.I.: A variational perspective on cloaking by anomalous localized resonance. Commun. Math. Phys. 328, 1–27 (2014)

    Article  MathSciNet  Google Scholar 

  16. Lai, Y., Chen, H., Zhang, Z., Chan, C.T.: Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009)

    Article  Google Scholar 

  17. McPhedran, R.C., Nicorovici, N.A., Botten, L.C., Milton, G.W.: Cloaking by plasmonic resonance among systems of particles: cooperation or combat. C. R. Phys. 10, 391–399 (2009)

    Article  Google Scholar 

  18. Milton, G.W., Nicorovici, N.A., McPhedran, R.C., Podolskiy, V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. Lond. Ser. A 461, 3999–4034 (2005)

    Article  MathSciNet  Google Scholar 

  19. Milton, G.W., Nicorovici, N.A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. Ser. A 462, 3027–3059 (2006)

    Article  MathSciNet  Google Scholar 

  20. Nguyen, H.-M.: Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients. Trans. Am. Math. Soc. 367, 6581–6595 (2015)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, H.-M.: Superlensing using complementary media. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 471–484 (2015)

    Article  MathSciNet  Google Scholar 

  22. Nguyen, H.-M.: Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media. C. R. Math. Acad. Sci. Paris 353, 41–46 (2015)

    Article  MathSciNet  Google Scholar 

  23. Nguyen, H.-M.: Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime. J. Eur. Math. Soc. (JEMS) 17, 1327–1365 (2015)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, H.-M.: Cloaking using complementary media in the quasistatic regime. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1509–1518 (2016)

    Article  MathSciNet  Google Scholar 

  25. Nguyen, H.-M.: Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients. J. Math. Pures Appl. 106, 342–374 (2016)

    Article  MathSciNet  Google Scholar 

  26. Nguyen, H.-M.: Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object. SIAM J. Math. Anal. 49, 3208–3232 (2017)

    Article  MathSciNet  Google Scholar 

  27. Nguyen, H.-M.: Superlensing using complementary media and reflecting complementary media for electromagnetic waves. Adv. Nonlinear Anal. 7, 449–467 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nguyen, H.-M.: Negative index materials: some mathematical perspectives. Acta Math. Vietnam. 44, 325–349 (2019)

    Article  MathSciNet  Google Scholar 

  29. Nguyen, H.-M.: Cloaking using complementary for electromagnetic waves. ESAIM Control Optim. Calc. Var. 25, 29 (2019)

    Article  MathSciNet  Google Scholar 

  30. Nguyen, H.-M.: Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime. J. Anal. Math. 138, 157–184 (2019)

    Article  MathSciNet  Google Scholar 

  31. Nguyen, H.-M., Nguyen, H.L.: Complete resonance and localized resonance in plasmonic structures. ESAIM Math. Model. Numer. Anal. 49, 741–754 (2015)

    Article  MathSciNet  Google Scholar 

  32. Nguyen, H.-M., Nguyen, H.L.: Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations. Trans. Am. Math. Soc. B 2, 93–112 (2015)

    Article  MathSciNet  Google Scholar 

  33. Nguyen, T., Wang, J.-N.: Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media. Proc. Am. Math. Soc. 140, 595–605 (2012)

    Article  MathSciNet  Google Scholar 

  34. Nicorovici, N.A., McPhedran, R.C., Milton, G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)

    Article  Google Scholar 

  35. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  36. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Usp. Fiz. Nauk 92, 517–526 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai-Minh Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HM. The invisibility via anomalous localized resonance of a source for electromagnetic waves. Res Math Sci 6, 32 (2019). https://doi.org/10.1007/s40687-019-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-019-0194-0

Navigation