Skip to main content
Log in

Abstract

Laser-Assisted milling is a type of thermally-assisted machining process in which a workpiece is locally softened by a laser heat source before machining. This method is effective solution for machining materials such as Inconel series alloys, titanium alloy, and ceramics, which are more difficult to machine compared with conventional materials. It is also a green machining process, because it saves energy by reducing the cutting force. Laser-Assisted milling has only been used in limited fields including single-direction machining of flat surfaces. When the laser-assisted milling has a complex tool-path, it is difficult to control the heat source and cutting tool simultaneously. To apply the process in industrial field studies of workpieces having various shapes are needed. This paper provides a review of current laser-assisted milling devices, and then develops a three-dimensional laser-assisted milling device for complex tool-path machining. A high-power diode laser with additional axes was retrofit to the spindle of a five-axis machining center. The device could be used in industrial fields whose machined products have complicated shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeon, Y., Park, H. W., and Lee, C. M., “Current Research Trends in External Energy Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 337–342, 2013.

    Article  Google Scholar 

  2. Park, K. H., Yang, G. D., Lee, M. G., Jeong, H., Lee, S. W., et al., “Eco-Friendly Face Milling of Titanium Alloy,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1159–1164, 2014

    Article  Google Scholar 

  3. Wang, C. Y., Chen, Y. H., An, Q. L., Cai, X. J., Ming, W. W., et al., “Drilling Temperature and Hole Quality in Drilling of CFRP/Aluminum Stacks Using Diamond Coated Drill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 18, pp. 1689–1697, 2015.

    Article  Google Scholar 

  4. Xu, J. and Mansori, M. E., “Cutting Modeling Using Cohesive Zone Concept of Titanium/CFRP Composite Stacks,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2091–2100, 2015.

    Article  Google Scholar 

  5. Yuan, X., Liang, X., Li, X., Hong, M., and Tang, K., “Microstructure and Mechanical Property of Brazed Joints in Titanium Alloy and Aluminum Alloy Combination with Tin Foil Interlayer,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1293–1297, 2015.

    Article  Google Scholar 

  6. Quan, G. Z., Pu, S. A., Zhan, Z. Y., Zou, Z. Y., Liu, Y. Y., et al., “Modelling of the Hot Flow Behaviors for Ti-13Nb-13Zr Alloy by BP-ANN Model and Its Application,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2129–2137, 2015.

    Article  Google Scholar 

  7. Khademzadeh, S., Parvin, N., and Bariani, P. F., “Production of NiTi Alloy by Direct Metal Deposition of Mechanically Alloyed Powder Mixtures,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2333–2338, 2015.

    Article  Google Scholar 

  8. Jiang, C. P., “The Effect of Initial Grain Size on the Mechanical Properties and Deformability of Titanium Alloy in a Direct Extrusion Process,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 301–307, 2015.

    Article  Google Scholar 

  9. Lee, S. J., Kim, J. D., and Suh, J., “Microstructural Variations and Machining Characteristics of Silicon Nitride Ceramics from Increasing the Temperature in Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1269–1274, 2014.

    Article  Google Scholar 

  10. Gao, X. D. and Zhang, Y. X., “Prediction Model of Weld Width During High-Power Disk Laser Welding of 304 Austenitic Stainless Steel,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 399–405, 2014.

    Article  Google Scholar 

  11. Joo, S. M., Bang, H. S., and Kwak, S. Y., “Optimization of Hybrid CO2 Laser-GMA Welding Parameters on Dissimilar Materials AH32/STS304L Using Grey-Based Taguchi Analysis,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 447–454, 2014.

    Article  Google Scholar 

  12. Heo, J., Min, H., and Lee, M., “Laser Micromachining of Permalloy for Fine Metal Mask,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 225–230, 2015.

    Article  Google Scholar 

  13. Zhang, Y. J., Kim, J. B., Song, J. H., Lee, G. A., Lee, H. J., et al., “FEM Analysis for Laser Banding Process of DP980 Steel Sheet,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 315–321, 2015.

    Article  Google Scholar 

  14. Gupta, N., Ahirrao, S. B., Paul S., and Singh, R. K., “Modeling of Micro-Scale Fiber Laser Hardening Process and Optimization via Statistical Approximation of the Engineering Models,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2281–2287, 2015.

    Article  Google Scholar 

  15. Shen, H., Wang, H., Hu, J., and Yao, Z., “The Process Planning in Laser Thermal Adjustment of Three Cut-Outs Actuators,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2475–2482, 2015.

    Article  Google Scholar 

  16. Lee, C. J., Kim, J. D., and Kim, Y. C., “Study on Monitoring of Plasma Emission Signal in Lap Welding of Zn Coated Steel Sheet Using CO2 Laser,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 495–500, 2015.

    Article  Google Scholar 

  17. Cho, Y. T. and Na, S. J., “Numerical Analysis of Plasma in CO2 Laser and ARC Hybrid Welding,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 787–795, 2015.

    Article  Google Scholar 

  18. Chen, P. C., Chen, Y. C., Pan, C. W., and Li, K. M., “Parameter Optimization of Micro-Milling Brass Mold Inserts for Micro-Channels with Taguchi Method,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 647–651, 2015.

    Article  Google Scholar 

  19. Lee, S. J., Takahashi, M., Kawahito, Y., and Katayama, S., “Microstructural Evolution and Characteristics of Weld Fusion Zone in High Speed Dissimilar Welding of Ti and Al,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2121–2127, 2015.

    Article  Google Scholar 

  20. Seo, H., Kim, J. G., Yoon, S. H., and Jhang, K. Y., “Determination of Laser Beam Intensity to Maximize Amplitude of Ultrasound Generated in Ablation Regime via Monitoring Plasma-Induced Air-Borne Sound,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2641–2645, 2015.

    Article  Google Scholar 

  21. Oh, C., Kang, M., and Hahn, J. W., “Accurate Measurement of Atomic Chlorine Radical Density in Process Plasma with Spatially Resolvable Optical Emission Spectrometer,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 1919–1924, 2015.

    Article  Google Scholar 

  22. Böhmermann, F., Hasselbruch, H., Herrmann, M., Riemer, O., Mehner, A., et al., “Dry Rotary Swaging-Approaches for Lubricant Free Process Design,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 325–331, 2015.

    Article  Google Scholar 

  23. Nguyen-Tran, H. D., Oh, H. S., Hong, S. T., Han, H. N., Cao, J., et al., “A Review of Electrically-Assisted Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 365–376, 2015.

    Article  Google Scholar 

  24. Rozzi, J. C., Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., “Transient, Three-Dimensional Heat Transfer Model for the Laser Assisted Machining of Silicon Nitride: I. Comparison of Predictions with Measured Surface Temperature Histories,” International Journal of Heat and Mass Transfer, Vol. 43, No. 8, 2000.

    Google Scholar 

  25. Lei, S., Shin, Y. C., and Incropera, F. P., “Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser-Assisted Machining,” International Journal of Machine Tools and Manufacture, Vol. 40, No. 15, pp. 2213–2233, 2000.

    Article  Google Scholar 

  26. Rebro, P. A., Shin, Y. C., and Incropera, F. P., “Design of Operating Conditions for Crackfree Laser-Assisted Machining of Mullite,” International Journal of Machine Tools and Manufacture, Vol. 40, No. 7–8, pp. 677–694, 2004.

    Article  Google Scholar 

  27. Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., “Heat Transfer Model of Semi-Transparent Ceramics Undergoing Laser-Assisted Machining,” International Journal of Heat and Mass Transfer, Vol. 48, No. 10, pp. 1999–2012, 2005.

    Article  Google Scholar 

  28. Dumitrescu, P., Koshy, P., Stenekes, J., and Elbestawi, M. A., “High-Power Diode Laser Assisted Hard Turning of AISI D2 Tool Steel,” International Journal of Machine Tools and Manufacture, Vol. 46, No. 15, pp. 2009–2016, 2006.

    Article  Google Scholar 

  29. Tian, Y. and Shin, Y. C., “Laser-Assisted Machining of Damage-Free Silicon Nitride Parts with Complex Geometric Features via In-Process Control of Laser Power,” Journal of the American Ceramic Society, Vol. 89, No. 11, pp. 3397–3405, 2006.

    Article  Google Scholar 

  30. Anderson, M., Patwa, R., and Shin, Y. C., “Laser-Assisted Machining of Inconel 718 with an Economic Analysis,” International Journal of Machine Tools and Manufacture, Vol. 46, No. 14, pp. 1879–1891, 2006.

    Article  Google Scholar 

  31. Chang, C. W. and Kuo, C. P., “An Investigation of Laser-Assisted Machining of Al2O3 Ceramics Planing,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 3–4, pp. 452–461, 2007.

    Article  Google Scholar 

  32. Singh, R. and Melkote, S. N., “Characterization of a Hybrid Laser-Assisted Mechanical Micromachining (LAMM) Process for a Difficult-to-Machine Material,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 7–8, pp. 1139–1150, 2007.

    Article  Google Scholar 

  33. Chang, C. W. and Kuo, C. P., “Evaluation of Surface Roughness in Laser-Assisted Machining of Aluminum Oxide Ceramics with Taguchi Method,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 1, pp. 141–147, 2007.

    Article  Google Scholar 

  34. Singh, R., Alberts, M. J., and Melkote, S. N., “Characterization and Prediction of the Heat-Affected Zone in a Laser-Assisted Mechanical Micromachining Process,” International Journal of Machine Tools and Manufacture, Vol. 48, No. 9, pp. 994–1004, 2008.

    Article  Google Scholar 

  35. Sun, S., Harris, J., and Brandt, M., “Parametric Investigation of Laser-Assisted Machining of Commercially Pure Titanium,” Advanced Engineering Materials, Vol. 10, No. 6, pp. 565–752, 2008.

    Article  Google Scholar 

  36. Pfefferkorn, F. E., Lei, S., Jeon, Y., and Haddad, G., “A Metric for Defining the Energy Efficiency of Thermally Assisted Machining,” International Journal of Machine Tools and Manufacture, Vol. 49, No. 5, pp. 357–365, 2009.

    Article  Google Scholar 

  37. Attia, H., Tavakoli, S., Vargas, R., and Thomson, V., “Laser-Assisted High-Speed Finish Turning of Superalloy Inconel 718 Under Dry Conditions,” CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 83–88, 2010.

    Article  Google Scholar 

  38. Ding, H. and Shin, Y. C., “Laser-Assisted Machining of Hardened Steel Parts with Surface Integrity Analysis,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 1, pp. 106–114, 2010.

    Article  Google Scholar 

  39. Dandekar, C. R., Shin, Y. C., and Barnes, J., “Machinability Improvement of Titanium Alloy (Ti-6Al-4V) via LAM and Hybrid Machining,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 2, pp. 174–182, 2010.

    Article  Google Scholar 

  40. Ahn, S. H. and Lee, C. M., “A Study on Large-Area Laser Processing Analysis in Consideration of the Moving Heat Source,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 285–292, 2011.

    Article  Google Scholar 

  41. Rao, B., Dandekar, C. R., and Shin, Y. C., “An Experimental and Numerical Study on the Face Milling of Ti-6Al-4V Alloy: Tool Performance and Surface Integrity,” Journal of Materials Processing Technology, Vol. 211, No. 2, pp. 294–304, 2011.

    Article  Google Scholar 

  42. Masood, S. H., Armitage, K., and Brandt, M., “An Experimental Study of Laser-Assisted Machining of Hard-to-Wear White Cast Iron,” International Journal of Machine Tools and Manufacture, Vol. 51, No. 6, pp. 450–456, 2011.

    Article  Google Scholar 

  43. Kim, K. S., Kim, J. H., Choi, J. Y., and Lee, C. M., “A Review on Research and Development of Laser Assisted Turning,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 753–759, 2011.

    Article  MathSciNet  Google Scholar 

  44. Kim, J. D., Lee, S. J., and Suh, J., “Characteristics of Laser Assisted Machining for Silicon Nitride Ceramic according to Machining Parameters,” Journal of Mechanical Science and Technology, Vol. 25, No. 4, pp. 995–1001, 2011.

    Article  Google Scholar 

  45. Rahman, R. R. A., Sun, S., Wang, G., and Dargusch, M. S., “An Investigation of Cutting Forces and Cutting Temperatures During Laser-Assisted Machining of the Ti-6Cr-5Mo-5V-4Al Beta Titanium Alloy,” International Journal of Machine Tools and Manufacture, Vol. 63, pp. 58–69, 2012.

    Article  Google Scholar 

  46. Navas, G. V., Arriola, I., Gonzalo, O., and Leunda, J., “Mechanisms Involved in the Improvement of Inconel 718 Machinability by Laser Assisted Machining (LAM),” International Journal of Machine Tools and Manufacture, Vol. 74, pp. 19–28, 2013.

    Article  Google Scholar 

  47. Dandekar, C. R. and Shin, Y. C., “Experimental Evaluation of Laser-Assisted Machining of Silicon Carbide Particle-Reinforced Aluminum Matrix Composites,” The International Journal of Advanced Manufacturing Technology, Vol. 66, No. 9–12, pp. 1603–1610, 2013.

    Article  Google Scholar 

  48. Ding, H. and Shin, Y. C., “Improvement of Machinability of Waspaloy via Laser-Assisted Machining,” The International Journal of Advanced Manufacturing Technology, Vol. 64, No. 1–4, pp. 475–486, 2013.

    Article  Google Scholar 

  49. Rahman, R. R. A., Sun, S., Palanisamy, S., Wang, G., and Dargusch, M. S., “A Study on Laser Assisted Machining of Ti10V2Fe3Al Alloy with Varying Laser Power,” The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 1, pp. 219–224, 2014.

    Article  Google Scholar 

  50. Sim, M. S. and Lee, C. M., “A Study on the Laser Preheating Effect of Inconel 718 Specimen with Rotated Angle with Respect to 2-Axis,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 1, pp. 189–192, 2014.

    Article  Google Scholar 

  51. MONFORTS, “RNC 400 Laser Turn,” http://www.monforts-wzm.de/produkte/rnc/rnc-maschinenbeschreibung.html (Accessed 14 January 2016)

    Google Scholar 

  52. Yang, B., Shen, X., and Lei, S., “Mechanisms of Edge Chipping in Laser-Assisted Milling of Silicon Nitride Ceramics,” International Journal of Machine Tools and Manufacture, Vol. 49, No. 3–4, pp. 344–350, 2009.

    Article  Google Scholar 

  53. Shen, X., Yang, B., and Lei, S., “Distinct Element Modeling of Laser Assisted Milling of Silicon Nitride Ceramics,” Journal of Manufacturing Processes, Vol. 12, No. 1, pp. 30–37, 2010.

    Article  Google Scholar 

  54. Shen, X. and Lei, S., “Experimental Study on Operating Temperature in Laser-Assisted Milling of Silicon Nitride Ceramics,” The International Journal of Advanced Manufacturing Technology, Vol. 52, No. 3, pp. 143–154, 2011.

    Article  Google Scholar 

  55. Brecher, C., Rosen, C., and Emonts, M., “Laser-Assisted Milling of Advanced Materials.” Physics Procedia, Vol. 12, pp. 259–272, 2010.

    Article  Google Scholar 

  56. Brecher, C., Rosen, C., Monts, M., and Hermani, J. P., “Laser-Assisted Milling of Advanced Materials,” Physics Procedia, Vol. 12, pp. 599–606, 2011.

    Article  Google Scholar 

  57. Wiedenmann, R., Leibl, S., and Zahe, M. F., “Influencing Factors and Workpiece’s Microstructure in Laser-Assisted Milling of Titanium,” Physics Procedia, Vol. 39, pp. 265–276, 2012.

    Article  Google Scholar 

  58. Wiedenmann, R. and Zaeh M. F., “Laser-Assisted Milling-Process Modeling and Experimental Validation,” CIRP Journal of Manufacturing Science and Technology, Vol. 8, pp. 70–77, 2015.

    Article  Google Scholar 

  59. Hedberg, G. K. and Shin, Y. C., “Laser Assisted Milling of Ti-6Al-4V ELI with the Analysis of Surface Integrity and Its Economics,” Lasers in Manufacturing and Material Processing, Vol. 2, No. 3, pp. 164–185, 2015.

    Article  Google Scholar 

  60. Bermingham, M. J., Schaffarzyk, P., Palanisamy, S., and Dargusch, M. S., “Laser-Assisted Milling Strategies with Different Cutting Paths,” The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 9, pp. 1487–1494, 2014.

    Article  Google Scholar 

  61. Bermingham, M. J., Sim, W. M., Kent, D., Gardiner, S., and Dargusch, M. S., “Tool Life and Wear Mechanisms in Laser Assisted Milling Ti-6Al-4V,” Wear, Vols. 322–323, pp. 151–163, 2015.

    Article  Google Scholar 

  62. Kumar, M. and Melkote, S. N., “Process Capability Study of Laser Assisted Micro Milling of a Hard-to-Machine Material,” Journal of Manufacturing Processes, Vol. 14, No. 1, pp. 41–51, 2012.

    Article  Google Scholar 

  63. Kumar, M., Melkote, S. N., and M’Saoubi, R., “Wear Behavior of Coated Tools in Laser Assisted Micro-Milling of Hardened Steel,” Wear, Vol. 296, No. 1–2, pp. 510–518, 2012.

    Article  Google Scholar 

  64. Jeon, Y. and Pfefferkorn, F., “Effect of Laser Preheating the Workpiece on Micro End Milling of Metals,” Journal of Manufacturing Science and Engineering, Vol. 130, No. 1, pp. 011004.1–011004.9, 2008.

    Article  Google Scholar 

  65. Kang, D. W. and Lee, C. M., “A Study on Determining the Exponents for a Constitutive Equation in Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 11, pp. 2051–2054, 2013.

    Article  Google Scholar 

  66. Kang, D. W. and Lee, C. M., “A Study on the Development of the Laser-Assisted Milling Process and a Related Constitutive Equation for Silicon Nitride,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, pp. 109–112, 2014.

    Article  Google Scholar 

  67. Tian, Y., Wu, B., Anderson, M., and Shin, Y. C., “Laser-Assisted Milling of Silicon Nitride Ceramics and Inconel 718,” Journal of Manufacturing Science and Engineering, Vol. 130, Paper No. 031013, 2008.

    Article  Google Scholar 

  68. Shelton, J. and Shin, Y. C., “Comparative Evaluation of Laser-Assisted Micro-Milling for AISI 316, AISI 422, TI-6AL-4V and Inconel 718 in a Side-Cutting Configuration,” Journal of Micromechanics and Microengineering, Vol. 20, No. 7, 2010.

    Google Scholar 

  69. Ding, H., Shen, N., and Shin, Y. C., “Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys,” Journal of Materials Processing Technology, Vol. 212, No. 3, pp. 601–613, 2012.

    Article  Google Scholar 

  70. Choi, J. Y. and Lee, C. M., “NC Code Generation for Laser Assisted Turn-Mill of Various Type of Clovers and Square Section Members,” Journal of Central South University, Vol. 19, No. 11, pp. 3064–3068, 2012.

    Article  MathSciNet  Google Scholar 

  71. Kim, J. H., Choi, J. Y., and Lee, C. M., “A Study on the Effect of Laser Preheating on Laser Assisted Turn-Mill for Machining Square and Spline Members,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 275–282, 2014.

    Article  Google Scholar 

  72. Cha, N. H., Woo, W. S., and Lee, C. M., “A Study on the Optimum Machining Conditions for Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2327–2332, 2015.

    Article  Google Scholar 

  73. Cha, N. H. and Lee, C. M., “A Study on Machining Characteristics of Silicon Nitride with Spline Members in Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2691–2697, 2015.

    Article  Google Scholar 

  74. Kim, D. H. and Lee, C. M., “Development of a One-Axis Manipulator for Laser-Assisted Machining,” Journal of Central South University, Vol. 20, No. 2, pp. 378–384, 2013.

    Article  Google Scholar 

  75. Melkote, S., Kumar, M., Hashimoto, F., and Lahoti, G., “Laser Assisted Micro-Milling of Hard-to-Machine Materials,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 45–48, 2009.

    Article  Google Scholar 

  76. Kim, D. H. and Lee, C. M., “A Study of Cutting Force and Preheating-Temperature Prediction for Laser-Assisted Milling of Inconel 718 and AISI 1045 Steel,” International Journal of Heat and Mass Transfer, Vol. 71, pp. 264–274, 2014.

    Article  Google Scholar 

  77. Kim, T. W. and Lee, C. M, “Determination of the Machining Parameters of Nickel-Based Alloys by High-Power Diode Laser,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 309–314, 2015.

    Article  Google Scholar 

  78. Sim, M. S. and Lee, C. M., “Determination of Optimal Laser Power according to the Tool Path Inclination Angle of a Titanium Alloy Workpiece in Laser-Assisted Machining,” The International Journal of Advanced Manufacturing Technology, DOI No. 10.1007/s00170-015-7684-z, pp. 1–8, 2015.

    Google Scholar 

  79. Kim, D. H. and Lee, C. M., “A Study on the Laser-Assisted Ball-End Milling of Difficult-to-Cut Materials Using a New Back-and-Forth Preheating Method,” The International Journal of Advanced Manufacturing Technology, DOI No. 10.1007/s00170-015-8014-1, pp. 1–10, 2015.

    Google Scholar 

  80. Woo, W. S. and Lee, C. M., “A Study of the Machining Characteristics of AISI 1045 Steel and Inconel 718 with a Cylindrical Shape in Laser-Assisted Milling,” Applied Thermal Engineering, Vol. 91, pp. 33–42, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CM., Kim, DH., Baek, JT. et al. Laser assisted milling device: A review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 199–208 (2016). https://doi.org/10.1007/s40684-016-0027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-016-0027-1

Keywords

Navigation