Skip to main content

Advertisement

Log in

SGLT2 inhibitors, sodium and off-target effects: an overview

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that in addition to emerging as an effective antihyperglycemic treatment have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Actually, sodium and water depletion may contribute to some positive actions of SGLT2i but evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, several experimental studies have recently identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Verma S, McMurray JJV (2018) SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of- the-art review. Diabetologia 61:2108–2117

    Article  CAS  Google Scholar 

  2. Kaplan A, Abidi E, El-Yazbi A et al (2018) Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev 23:419–437

    Article  CAS  Google Scholar 

  3. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  Google Scholar 

  4. Cavender MA, Steg G, Smith SC et al (2015) Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death. Circulation 132:923–931

    Article  Google Scholar 

  5. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657

    Article  CAS  Google Scholar 

  6. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357

    Article  CAS  Google Scholar 

  7. Kenneth WM (2019) Canagliflozin and cardiovascular and renal outcomes in type 2 diabetes mellitus and chronic kidney disease in primary and secondary cardiovascular prevention groups: results from the randomized CREDENCE trial. Circulation 140(9):739–750

    Article  Google Scholar 

  8. Dekkers CCJ, Wheeler DC, Sjöström CD, Stefansson BV, Cain V, Heerspink HJL (2018) Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and stages 3b–4 chronic kidney disease. Nephrol Dial Transpl 33(11):2005–2011

    Article  CAS  Google Scholar 

  9. Ansary TM, Fujisawa Y, Rahman A, Nakano D, Hitomi H, Kobara H, Masaki T, Titze JM, Kitada K, Nishiyama A (2017) Responses of renal hemodynamics and tubular functions to acute sodium-glucose cotransporter 2 inhibitor administration in non-diabetic anesthetized rats. Sci Rep 7:9555. https://doi.org/10.1038/s41598-017-09352-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302:R75–R83

    Article  CAS  Google Scholar 

  11. Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, Arakawa K, Togo M, Inagaki N, Kaku K (2017) Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther 34:436–451

    Article  CAS  Google Scholar 

  12. Rajasekeran H, Lytvyn Y, Cherney DZ (2016) Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int 89:524–526

    Article  CAS  Google Scholar 

  13. Sha S, Polidori D, Heise T, Natarajan J, Farrell K, Wang SS, Sica D, Rothenberg P, Plum-Morschel L (2014) Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 16:1087–1095

    Article  CAS  Google Scholar 

  14. Iijima H, Kifuji T, Maruyama N, Inagaki N (2015) Pharmacokinetics, pharmacodynamics, and safety of canagliflozin in Japanese patients with type 2 diabetes mellitus. Adv Ther 32:768–782

    Article  CAS  Google Scholar 

  15. Weir MR, Kline I, Xie J, Edwards R, Usiskin K (2019) Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin 30:1759–1768. https://doi.org/10.1185/03007995.2014.919907

    Article  CAS  Google Scholar 

  16. Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA (2016) SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care 39:717–725. https://doi.org/10.2337/dc16-0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862. https://doi.org/10.1111/dom.12127

    Article  CAS  PubMed  Google Scholar 

  18. Abdul-Ghani MA, DeFronzo RA, Norton L (2013) Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes 62:3324–3328

    Article  CAS  Google Scholar 

  19. Reed JW (2016) Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag 12:393–405

    Article  CAS  Google Scholar 

  20. Ansary TM, Nakano D, Nishiyama A (2019) Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 20(3):629

    Article  CAS  Google Scholar 

  21. Shin SJ, Chung S, Kim SJ, Lee EM, Yoo YH, Kim JW, Ahn YB, Kim ES, Moon SD, Kim MJ et al (2016) Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS ONE 11:e0165703

    Article  Google Scholar 

  22. McCullough PA, Kluger AY, Tecson KM, Barbin CM, Lee AY, Lerma EV, Rosol ZP, Kluger SL, Rangaswami J (2018) Inhibition of the sodium-proton antiporter (exchanger) is a plausible mechanism of potential benefit and harm for drugs designed to block sodium glucose co-transporter 2. Rev Cardiovasc Med 19(2):51–63. https://doi.org/10.31083/j.rcm.2018.02.021

    Article  PubMed  Google Scholar 

  23. Kimura G (2016) Importance of inhibiting sodium glucose cotransporter and its compelling indication in t2diabetes: pathophysiological hypothesis. J Am Soc Hypertens 10(3):271–278

    Article  CAS  Google Scholar 

  24. Mayer GJ, Wanner C et al (2019) Analysis from the EMPA-REG OUTCOME® trial indicates empagliflozin may assist in preventing the progression of chronic kidney disease in patients with type 2 diabetes irrespective of medications that alter intrarenal hemodynamics. Kidney Int 96(2):489–504

    Article  CAS  Google Scholar 

  25. Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R (2017) Zuurbier CJ Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60(3):568–573. https://doi.org/10.1007/s00125-016-4134

    Article  CAS  Google Scholar 

  26. Satou R et al (2012) Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. FASEB J 26:1821–1830

    Article  CAS  Google Scholar 

  27. Javier Donate-Correa et al. (2015) Inflammatory citokynes in diabetic nephropathy. J Diabetes Res

  28. Baer PC (2020) Kidney inflammation, injury and regeneration. https://doi.org/10.3390/ijms21031164

  29. Iannantuoni F, de Marañon AM et al (2019) The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med 8(11):1814

    Article  CAS  Google Scholar 

  30. Schneider MP, Raff U, Kopp C et al (2017) Skin sodium concentration corre- lates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 28:1867–1876

    Article  CAS  Google Scholar 

  31. Pogwizd SM, Sipido KR, Verdonck F et al (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896

    Article  CAS  Google Scholar 

  32. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100

    Article  Google Scholar 

  33. Schmieder R, Ott C, Linz P, Jumar A et al (2016) OS 12–03 SGLT-2-inhibition with dapagliflozin reduces tissue sodium content. J Hypertens 34(suppl 1):e76

    Article  Google Scholar 

  34. Brouwer TF, Vehmeijer JT, Kalkman DN et al (2018) Intensive blood pressure lowering in patients with and patients without type 2 diabetes: a pooled analysis from two randomized trials. Diabetes Care 41:1142–1148

    CAS  PubMed  Google Scholar 

  35. Donowitz M, Ming Tse C, Fuster D (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Aspects Med 34:236–251

    Article  CAS  Google Scholar 

  36. Wanner C, Inzucchi S et al (2016) Empaglifozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334

    Article  CAS  Google Scholar 

  37. Cassi P, Locatelli M et al. (2018) SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 3(15)

  38. Yaribeygi H, Katsiki N, Butler AE, Sahebkar A (2019) Effects of anti- diabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov Today 24(1):256–262

    Article  CAS  Google Scholar 

  39. Glick D et al (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–121

    Article  CAS  Google Scholar 

  40. Rajani R, Pastor-Soler NM, Hallows KR (2017) Role of AMP-activated pro- tein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens 26:375–383

    Article  CAS  Google Scholar 

  41. Lang F, Föller M (2014) Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels 8(1):20–28

    Article  CAS  Google Scholar 

  42. Packer M et al (2020) Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: a novel conceptual framework. Diabetes Obes Metab. 22(5):734–742

    Article  CAS  Google Scholar 

  43. Huang DY, Gao H, Boini KM, Osswald H, Nürnberg B, Lang F (2010) In vivo stimulation of AMP-activated protein kinase enhanced tubuloglomerular feedback but reduced tubular sodium transport during high dietary NaCl intake. Pflugers Arch 460:187–196

    Article  CAS  Google Scholar 

  44. Heerspink HJL, Stefansson BV, Chertow GM, Correa-Rotter R, Greene T, Hou FF, Lindberg M, McMurray J, Rossing P, Toto R, Langkilde AM, Wheeler DC (2020) Rationale and protocol of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transpl 35(2):274–282

    Article  Google Scholar 

  45. Herrington WG et al (2018) The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J 11(6):749–761

    Article  CAS  Google Scholar 

  46. Østergaard JA, Cooper ME, Jandeleit-Dahm KA (2020) Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol. https://doi.org/10.1007/s40620-020-00749-6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Pascalis.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Ethical standards

The study has been approved by an appropriate ethics committee and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Pascalis, A., Cianciolo, G., Capelli, I. et al. SGLT2 inhibitors, sodium and off-target effects: an overview. J Nephrol 34, 673–680 (2021). https://doi.org/10.1007/s40620-020-00845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00845-7

Keywords

Navigation