Skip to main content

Advertisement

Log in

Centromere protein I (CENPI) is a candidate gene for X-linked steroid sensitive nephrotic syndrome

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Individuals with proteinuria in association with hypoalbuminemia, edema, and hyperlipidemia are considered as having nephrotic syndrome (NS). NS is the most common kidney disease seen in the paediatric age group. NS is usually classified into steroid resistant nephrotic syndrome (SRNS) and steroid sensitive nephrotic syndrome (SSNS). More than 58 genes have been identified as a monogenic cause of SRNS, however, the genetic architecture of childhood SSNS remains poorly understood.

Methods

Here in this study, we performed sequencing of 66 NS candidate genes followed by whole genome SNP genotyping and whole exome sequencing in SSNS families with multiple affected individuals.

Results

NS candidate genes sequencing did not identify any pathogenic variant in the known genes. Homozygosity mapping based on an autosomal recessive model failed to detect any shared loss of heterozygosity region in the genome. An unbiased and hypothesis-free exome data analysis identified a missense variant (c.383G>A; p.Arg128Gln) in the CENPI gene. Sanger sequencing of both parents, unaffected and affected individuals confirmed an X-linked inheritance pattern of the variant (c.383G>A) with SSNS phenotype. The variant (c.383G>A) is very rare and is potentially damaging.

Conclusion

Collectively, these observations suggest that a specific pathogenic link between SSNS development and alteration in CENPI exists. However, human mutations in CENPI causing SSNS have not been reported hitherto. Identification of genetic defects underlying SSNS will help in understanding the precise aetiology of SSNS and improved management of children with NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362(9384):629–639

    Article  PubMed  Google Scholar 

  2. (1981) Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of Kidney Disease in Children. Kidney Int 20(6):765–771

  3. Benoit G, Machuca E, Antignac C (2010) Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 25(9):1621–1632

    Article  PubMed  PubMed Central  Google Scholar 

  4. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43(2):368–382

    Article  PubMed  Google Scholar 

  5. Rüth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ (2005) Children with steroid-sensitive nephrotic syndrome come of age: longterm outcome. J Pediatr 147(2):202–207

    Article  PubMed  Google Scholar 

  6. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the Transplant Registry: the 2006 annual report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11(4):366–373

    Article  PubMed  Google Scholar 

  7. Banh TH, Hussain-Shamsy N, Patel V, Vasilevska-Ristovska J, Borges K, Sibbald C, Lipszyc D, Brooke J, Geary D, Langlois V, Reddon M, Pearl R, Levin L, Piekut M, Licht CP, Radhakrishnan S, Aitken-Menezes K, Harvey E, Hebert D, Piscione TD, Parekh RS (2016) Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 11(10):1760–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuchshuber A, Gribouval O, Ronner V, Kroiss S, Karle S, Brandis M, Hildebrandt F (2001) Clinical and genetic evaluation of familial steroid-responsive nephrotic syndrome in childhood. J Am Soc Nephrol 12(2):374–378

    Article  CAS  PubMed  Google Scholar 

  9. Bierzynska A, Soderquest K, Koziell A (2014) Genes and podocytes—new insights into mechanisms of podocytopathy. Front Endocrinol 5:226

    Google Scholar 

  10. Lovric S, Ashraf S, Tan W, Hildebrandt F (2016) Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 31(11):1802–1813

    Article  CAS  PubMed  Google Scholar 

  11. Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJ, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91(4):937–947

    Article  PubMed  Google Scholar 

  12. Solanki AK, Widmeier E, Arif E, Sharma S, Daga A, Srivastava P, Kwon SH, Hugo H, Nakayama M, Mann N, Majmundar AJ, Tan W, Gee HY, Sadowski CE, Rinat C, Becker-Cohen R, Bergmann C, Rosen S, Somers M, Shril S, Huber TB, Mane S, Hildebrandt F, Nihalani D (2019) Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int 96(4):883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nestor JG, Groopman EE, Gharavi AG (2018) Towards precision nephrology: the opportunities and challenges of genomic medicine. J Nephrol 31(1):47–60

    Article  CAS  PubMed  Google Scholar 

  14. Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, Mozere M, Gupta S, Klootwijk E, Patel V, Hothi D, Waters A, Webb H, Tullus K, Jenkins L, Godinho L, Levtchenko E, Wetzels J, Knoers N, Teeninga N, Nauta J, Shalaby M, Eldesoky S, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Adeyemo A, Kristiansen M, Gbadegesin R, Webb NJ, Gale DP, Stanescu HC, Kleta R, Bockenhauer D (2019) Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 30(8):1375–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O’Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology Consortium (2015) HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome. J Am Soc Nephrol 26(7):1701–1710

    Article  CAS  PubMed  Google Scholar 

  16. Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschênes G, Ronco PJ (2018) Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. Am Soc Nephrol 29(7):2000–2013

    Article  CAS  Google Scholar 

  17. Jia X, Horinouchi T, Hitomi Y, Shono A, Khor SS, Omae Y, Kojima K, Kawai Y, Nagasaki M, Kaku Y, Okamoto T, Ohwada Y, Ohta K, Okuda Y, Fujimaru R, Hatae K, Kumagai N, Sawanobori E, Nakazato H, Ohtsuka Y, Nakanishi K, Shima Y, Tanaka R, Ashida A, Kamei K, Ishikura K, Nozu K, Tokunaga K, Iijima K, Research Consortium on Genetics of Childhood Idiopathic Nephrotic Syndrome in Japan (2018) Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol 29(8):2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. AlAyadhi LY, Hashmi JA, Iqbal M, Albalawi AM, Samman MI, Elamin NE, Bashir S, Basit S (2016) High-resolution SNP genotyping platform identified recurrent and novel CNVs in autism multiplex families. Neuroscience 17(339):561–570

    Article  CAS  Google Scholar 

  19. Basit S, Alharby E, Albalawi AM, Khoshhal KI (2018) Whole genome SNP genotyping in a family segregating developmental dysplasia of the hip detected runs of homozygosity on chromosomes 15q13.3 and 19p13.2. Congenit Anom (Kyoto) 58(2):56–61

    Article  CAS  Google Scholar 

  20. Seelow D, Schuelke M, Hildebrandt F, Nürnberg P (2009) Homozygosity mapper—an interactive approach to homozygosity mapping. Nucleic Acids Res 37:W593–W599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alharby E, Albalawi AM, Nasir A, Alhijji SA, Mahmood A, Ramzan K, Abdusamad F, Aljohani A, Abdelsalam O, Eldardear A, Basit S (2017) A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin Genet 92(6):579–586

    Article  CAS  PubMed  Google Scholar 

  22. Hashmi JA, Albarry MA, Almatrafi AM, Albalawi AM, Mahmood A, Basit S (2018) Whole exome sequencing identified a novel single base pair insertion mutation in the EYS gene in a six generation family with retinitis pigmentosa. Congenit Anom (Kyoto) 58(1):10–15

    Article  CAS  Google Scholar 

  23. Basit S, Al-Harbi KM, Alhijji SA, Albalawi AM, Alharby E, Eldardear A, Samman MI (2016) CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly. Hum Genet 135(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  24. Al-Barry MA, Albalawi AM, Sayf MA, Badawi A, Afzal S, Latif M, Samman MI, Basit S (2016) Sequence analysis of four vitamin D family genes (VDR, CYP24A1, CYP27B1 and CYP2R1) in Vogt–Koyanagi–Harada (VKH) patients: identification of a potentially pathogenic variant in CYP2R1. BMC Ophthalmol 16(1):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. AbdulAzeez S, Borgio JF (2016) In-silico computing of the most deleterious nsSNPs in HBA1 gene. PLoS ONE 11(1):e0147702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Abdulazeez S (2019) Molecular simulation studies on B-cell lymphoma/leukaemia 11A (BCL11A). Am J Transl Res 11(6):3689–3697

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genomics 16(Suppl 8):S1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shalhoub RJ (1974) Pathogenesis of lipid nephrosis: a disorder of T cell function. Lancet 2(7880):556–560

    Article  CAS  PubMed  Google Scholar 

  29. Trompeter RS, Barratt TM, Kay R, Turner MW, Soothill JF (1980) HLA, atopy and cyclophosphamide in steroid-responsive nephrotic syndrome. Kidney Int 17(1):113–117

    Article  CAS  PubMed  Google Scholar 

  30. Noss G, Bachmann HJ, Olbing H (1981) Association of minimal change nephrotic syndrome (MCNS) with HLA-B8 and B13. Clin Nephrol 15(4):172–174

    CAS  PubMed  Google Scholar 

  31. Cambon-Thomsen A, Bouissou F, Abbal M, Duprat MP, Barthe P, Calot M, Ohayon E (1986) HLA and Bf in idiopathic nephrotic syndrome in children: differences between corticosensitive and corticoresistant forms. Pathol Biol (Paris) 34(6):725–730

    CAS  Google Scholar 

  32. Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E, Hildebrandt F (2003) Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 14(7):1897–1900

    Article  CAS  PubMed  Google Scholar 

  33. Hamdouch K, Rodríguez C, Pérez-Venegas J, Rodríguez I, Astola A, Ortiz M, Yen TJ, Bennani M, Valdivia MM (2011) Anti-CENPI autoantibodies in scleroderma patients with features of autoimmune liver diseases. Clin Chim Acta 412(23–24):2267–2271

    Article  CAS  PubMed  Google Scholar 

  34. Bien CG, Bauer J (2013) Pathophysiology of antibody-associated diseases of the central nervous system. Nervenarzt 84(4):466–470

    Article  CAS  PubMed  Google Scholar 

  35. Chang D, Gao F, Slavney A, Ma L, Waldman YY, Sams AJ, Billing-Ross P, Madar A, Spritz R, Keinan A (2014) Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS ONE 9(12):e113684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gliddon AE, Dore CJ, Dunphy J, Betteridge Z, McHugh NJ, QUINS Trial Study Group (2011) Antinuclear antibodies and clinical associations in a british cohort with limited cutaneous systemic sclerosis. J Rheumatol 38(4):702–705

    Article  PubMed  Google Scholar 

  37. Mandai S, Kanda E, Arai Y, Hirasawa S, Hirai T, Aki S, Inaba N, Aoyagi M, Tanaka H, Ikeda T, Tamura T, Sasaki S (2012) Anti-centromere antibody is an independent risk factor for chronic kidney disease in patients with primary biliary cirrhosis. Clin Exp Nephrol 17(3):405–410

    Article  PubMed  CAS  Google Scholar 

  38. Mandai S, Arai Y, Hirasawa S, Hirai T, Aki S, Inaba N, Aoyagi M, Tanaka H, Tamura T, Sasaki S (2012) Anti-centromere antibody-positive subjects presenting with hypertensive emergency and renal dysfunction in the absence of skin manifestations: a variant of systemic sclerosis or a novel entity? Intern Med 51(12):1567–1572

    Article  PubMed  Google Scholar 

  39. Haley CO, Waters AM, Bader DM (2019) Malformations in the murine kidney caused by loss of CENP-F function. Anat Rec (Hoboken) 302(1):163–170

    Article  CAS  Google Scholar 

  40. Wu X, Lin Y, Shi L, Huang Y, Lai C, Wang Y, Zhang M, Wang S, Heng B, Yu G, Du X, Fang L, Fu Y, Chen J, Guo Z, Su Z, Wu S (2015) Upregulation of centromere protein H is associated with progression of renal cell carcinoma. J Mol Histol 46(4–5):377–385

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P (1998) Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 143(7):1961–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobayashi N, Reiser J, Schwarz K, Sakai T, Kriz W, Mundel P (2001) Process formation of podocytes: morphogenetic activity of microtubules and regulation by protein serine/threonine phosphatase PP2A. Histochem Cell Biol 115(3):255–266

    Article  CAS  PubMed  Google Scholar 

  43. Gödel M, Temerinac D, Grahammer F, Hartleben B, Kretz O, Riederer BM, Propst F, Kohl S, Huber TB (2015) Microtubule associated protein 1b (MAP1B) is a marker of the microtubular cytoskeleton in podocytes but is not essential for the function of the kidney filtration barrier in mice. PLoS ONE 10(10):e0140116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C (2014) Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway–Mowat syndrome. Am J Hum Genet 95(6):637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arai T, Okato A, Kojima S, Idichi T, Koshizuka K, Kurozumi A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N (2017) Regulation of spindle and kinetochore-associated protein 1 by antitumor miR-10a-5p in renal cell carcinoma. Cancer Sci 108(10):2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Xiaofu, Song Pan, Huang Chuiguo, Yuan Naijun, Zhao Xinghua, Changbao Xu (2019) Weighted gene co-expression network analysis for identifying hub genes in association with prognosis in Wilms tumor. Mol Med Rep 19(3):2041–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amaro AC, Samora CP, Holtackers R, Wang E, Kingston IJ, Alonso M, Lampson M, McAinsh AD, Meraldi P (2010) Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Biol 12(4):319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8(5):446–457

    Article  CAS  PubMed  Google Scholar 

  49. Cheeseman IM, Hori T, Fukagawa T, Desai A (2008) KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 19(2):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to study participants for their cooperation throughout the study.

Funding

This research was supported by the Strategic Technologies Programs of the National Plan for Science, Technology and Innovation (MAARIFAH) in the Kingdom of Saudi Arabia; Grant number 13‑MED2088‑05.

Author information

Authors and Affiliations

Authors

Contributions

HMA, MAS, RS recruited patients and performed clinical phenotyping; EA and JAH performed Sanger sequencing and segregation analysis; KR performed SNP genotyping data analysis; SB designed the study, analysed exome data and wrote the manuscript. All authors have seen the final draft.

Corresponding author

Correspondence to Sulman Basit.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All procedures performed in the present study were approved by The Ethical Review Committee of Taibah University (Medina, Saudi Arabia; approval no. TU‑REC‑2016018) and were also in accordance with the Declaration of Helsinki. Written informed consent was obtained from all individual participants or the guardians of underage participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, S., Al-Edressi, H.M., Sairafi, M.H. et al. Centromere protein I (CENPI) is a candidate gene for X-linked steroid sensitive nephrotic syndrome. J Nephrol 33, 763–769 (2020). https://doi.org/10.1007/s40620-019-00692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-019-00692-1

Keywords

Navigation