Skip to main content

Advertisement

Log in

DACH1 attenuated PA-induced renal tubular injury through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Palmitic acid (PA), the major saturated fatty acid in the blood, often induces the initiation and progression of diabetic kidney disease (DKD). However, the underlying mechanism remains unclear. DACH1 is an important regulator of kidney functions. Herein, we investigated the roles of DACH1 in PA-induced kidney injury.

Methods

Clinical data from the NHANES database were subjected to analyse the association between serum PA (sPA), blood glucose and kidney function. Molecular docking of PA was performed with DACH1. Immunohistochemistry, cell viability, annexin V/7-AAD double staining, TUNEL assay, immunofluorescent staining, autophagic flux analysis, qRT-PCR and western blot were performed.

Results

Clinical data confirmed that sPA was increased significantly in the pathoglycemia individuals compared with controls and correlated negatively with renal function. Our findings suggested that PA could dock with DACH1. DACH1 enhances cell viability by inhibiting apoptosis and attenuating autophagy blockage induced by PA. Furthermore, the results demonstrated that DACH1 ameliorated inflammation and fibrosis through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway in PA-treated renal tubular epithelial cell line (HK-2).

Conclusions

This study proved that sPA presents a risk factor for kidney injuries and DACH1 might serve as a protective target against renal function deterioration in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available upon request to the corresponding author.

References

  1. Chen Q, Su Y, Ju Y, Ma K, Li W, Li W (2018) Astragalosides IV protected the renal tubular epithelial cells from free fatty acids-induced injury by reducing oxidative stress and apoptosis. Biomed Pharmacother 108:679–686. https://doi.org/10.1016/j.biopha.2018.09.049

    Article  CAS  PubMed  Google Scholar 

  2. Cheng STW, Li SYT, Leung PS (2019) Fibroblast growth factor 21 stimulates pancreatic islet autophagy via inhibition of AMPK-mTOR signaling. Int J Mol Sci 20:2517. https://doi.org/10.3390/ijms20102517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang L, Peng W, Zhao Z, Zhang M, Shi Z, Song Z et al (2021) Prevalence and treatment of diabetes in China, 2013–2018. JAMA 326:2498–2506. https://doi.org/10.1001/jama.2021.22208

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F et al (2019) Berberine Protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics 9:1698–1713. https://doi.org/10.7150/thno.30640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang L, Guan G, Lei L, Lv Q, Liu S, Zhan X et al (2018) Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones 23:1283–1294. https://doi.org/10.1007/s12192-018-0936-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M et al (2007) Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46:823–830. https://doi.org/10.1002/hep.21752

    Article  CAS  PubMed  Google Scholar 

  7. Zhao M, Lu L, Lei S, Chai H, Wu S, Tang X et al (2016) Inhibition of receptor interacting protein kinases attenuates cardiomyocyte hypertrophy induced by palmitic acid. Oxid Med Cell Longev 2016:1451676. https://doi.org/10.1155/2016/1451676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori Y, Ajay AK, Chang JH, Mou S, Zhao H, Kishi S et al (2021) KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab 33:1042-1061.e1047. https://doi.org/10.1016/j.cmet.2021.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang CC, Chou CA, Chen WY, Yang JL, Lee WC, Chen JB et al (2021) Empagliflozin ameliorates free fatty acid induced-lipotoxicity in renal proximal tubular cells via the PPARγ/CD36 pathway in obese mice. Int J Mol Sci 22:12408. https://doi.org/10.3390/ijms222212408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu Y, Chen F, Huang X, Zhang R, Yu Z, Chen Z et al (2019) Berberine (BBR) attenuated palmitic acid (PA)-induced lipotoxicity in human HK-2 cells by promoting peroxisome proliferator-activated receptor α (PPAR-α). Med Sci Monit 25:7702–7708. https://doi.org/10.12659/msm.916686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Popov VM, Wu K, Zhou J, Powell MJ, Mardon G, Wang C et al (2010) The dachshund gene in development and hormone-responsive tumorigenesis. Trends Endocrinol Metab 21:41–49. https://doi.org/10.1016/j.tem.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Wang C, Wang Z, Dampier W, Wu K, Casimiro MC et al (2010) Attenuation of Forkhead signaling by the retinal determination factor DACH1. Proc Natl Acad Sci U S A 107:6864–6869. https://doi.org/10.1073/pnas.1002746107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zheng X, Liu Q, Yi M, Qin S, Wu K (2018) The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther 11:6479–6487. https://doi.org/10.2147/ott.S176113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK et al (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254. https://doi.org/10.1038/nature02083

    Article  CAS  PubMed  Google Scholar 

  15. Schild R, Knüppel T, Konrad M, Bergmann C, Trautmann A, Kemper MJ et al (2013) Double homozygous missense mutations in DACH1 and BMP4 in a patient with bilateral cystic renal dysplasia. Nephrol Dial Transplant 28:227–232. https://doi.org/10.1093/ndt/gfs539

    Article  CAS  PubMed  Google Scholar 

  16. Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL et al (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376–384. https://doi.org/10.1038/ng.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z et al (2021) DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 131:e141279. https://doi.org/10.1172/jci141279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doke T, Huang S, Qiu C, Liu H, Guan Y, Hu H et al (2021) Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. J Clin Invest 131:e141801. https://doi.org/10.1172/jci141801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou X, Lu Y, Guo P, Zhou C (2021) Upregulation of microRNA-140-3p mediates dachshund family transcription factor 1 expression in immunoglobulin A nephropathy through cell cycle-dependent mechanisms. Mol Med Rep 23:134. https://doi.org/10.3892/mmr.2020.11773

    Article  CAS  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu Q, Yu ZX, Xie YL, Bai L, Liang SR, Ji QH et al (2023) MicroRNA-137 inhibits pituitary prolactinoma proliferation by targeting AKT2. J Endocrinol Invest 46:1145–1154. https://doi.org/10.1007/s40618-022-01964-7

    Article  CAS  PubMed  Google Scholar 

  22. Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S et al (2021) Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis 12:110. https://doi.org/10.1038/s41419-020-03375-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R et al (2018) Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics 8:5200–5212. https://doi.org/10.7150/thno.27806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang XS, Cai MY, Li XJ, Zhong Q, Li ML, Xia YF et al (2022) Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Front Med (Lausanne) 9:939149. https://doi.org/10.3389/fmed.2022.939149

    Article  PubMed  Google Scholar 

  25. Zhang X, Li X, Xiong G, Yun F, Feng Y, Ni Q et al (2022) Palmitic acid promotes lung metastasis of melanomas via the TLR4/TRIF-Peli1-pNF-κB pathway. Metabolites 12:1132. https://doi.org/10.3390/metabo12111132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Q, Ning D, Chen J, Li X, Chen XP, Jiang L (2018) SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53. Cancer Biol Ther 19:381–390. https://doi.org/10.1080/15384047.2018.1423920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang YL, Wang JM, Yin H, Wang SB, He CL, Liu J (2020) DACH1, a novel target of miR-218, participates in the regulation of cell viability, apoptosis, inflammatory response, and epithelial-mesenchymal transition process in renal tubule cells treated by high-glucose. Ren Fail 42:463–473. https://doi.org/10.1080/0886022x.2020.1762647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie X, Yi W, Zhang P, Wu N, Yan Q, Yang H et al (2017) Green tea polyphenols, mimicking the effects of dietary restriction, ameliorate high-fat diet-induced kidney injury via regulating autophagy flux. Nutrients 9:497. https://doi.org/10.3390/nu9050497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei W, An XR, Jin SJ, Li XX, Xu M (2018) Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep 8:9. https://doi.org/10.1038/s41598-017-18427-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang XS, Chen XM, Wan JM, Gui HB, Ruan XZ, Du XG (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764. https://doi.org/10.1038/srep42764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Li Y, Wang Z, Ding F, Cheng Z, Xu Q et al (2018) Rab7 empowers renal tubular epithelial cells with autophagy-mediated protection against albumin-induced injury. Exp Cell Res 370:198–207. https://doi.org/10.1016/j.yexcr.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Kitada M, Ogura Y, Liu H, Koya D (2021) Dapagliflozin restores impaired autophagy and suppresses Inflammation in high glucose-treated HK-2 Cells. Cells 10:1457. https://doi.org/10.3390/cells10061457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khan MJ, Rizwan Alam M, Waldeck-Weiermair M, Karsten F, Groschner L, Riederer M et al (2012) Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem 287:21110–21120. https://doi.org/10.1074/jbc.M111.319129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin Y, Zhong L, Li H, Xu Y, Li X, Zheng D (2020) Psoralen alleviates high glucose-induced HK-2 cell injury by inhibition of Smad 2 signaling via upregulation of microRNA 874. BMC Pharmacol Toxicol 21:52. https://doi.org/10.1186/s40360-020-00434-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie K, Yan Z, Wang W, Luo R, Gao X, Wang P et al (2022) ssc-microRNA-132 targets DACH1 to exert anti-inflammatory and anti-apoptotic effects in Clostridium perfringens beta2 toxin-treated porcine intestinal epithelial cells. Dev Comp Immunol 127:104270. https://doi.org/10.1016/j.dci.2021.104270

    Article  CAS  PubMed  Google Scholar 

  37. Korbecki J, Bajdak-Rusinek K (2019) The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 68:915–932. https://doi.org/10.1007/s00011-019-01273-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li R, Guo Y, Zhang Y, Zhang X, Zhu L, Yan T (2019) Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int J Mol Sci 20:1103. https://doi.org/10.3390/ijms20051103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Wei X, Lu S, Lin X, Huang J, Chen L et al (2019) Protective effect of DMDD, isolated from the root of Averrhoa carambola L., on high glucose induced EMT in HK-2 cells by inhibiting the TLR4-BAMBI-Smad2/3 signaling pathway. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.108705

    Article  PubMed  Google Scholar 

  40. Borghi SM, Fattori V, Ruiz-Miyazawa KW, Bertozzi MM, Lourenco-Gonzalez Y, Tatakihara RI et al (2018) Pyrrolidine dithiocarbamate inhibits mouse acute kidney injury induced by diclofenac by targeting oxidative damage, cytokines and NF-κB activity. Life Sci 208:221–231. https://doi.org/10.1016/j.lfs.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  41. Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S et al (2021) Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 21:66. https://doi.org/10.3892/etm.2020.9498

    Article  CAS  PubMed  Google Scholar 

  42. Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY et al (2020) Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 41:670–677. https://doi.org/10.1038/s41401-019-0324-7

    Article  CAS  PubMed  Google Scholar 

  43. Wu K, Yang Y, Wang C, Davoli MA, D’Amico M, Li A et al (2003) DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem 278:51673–51684. https://doi.org/10.1074/jbc.M310021200

    Article  CAS  PubMed  Google Scholar 

  44. Cheng HP, Huang CJ, Tsai ML, Ong HT, Cheong SK, Choo KB et al (2021) MicroRNA-362 negatively and positively regulates SMAD4 expression in TGF-β/SMAD signaling to suppress cell migration and invasion. Int J Med Sci 18:1798–1809. https://doi.org/10.7150/ijms.50871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Jie Lin and Bo Li contribute equally to this work and are co-first authors. Jie Zhou, Xiaomiao Li and Yinlan Bai are co-corresponding authors.

Funding

This work was supported by the National Natural Science Foundation of China (NO.82070839 to JZ) and 2017 China Diabetes Excellence Research Project to JZ.

Author information

Authors and Affiliations

Authors

Contributions

JL and BL: experiments, statistics and discussion. QX, YSL, YW, YLK and XW: experiments and data analysis. YL, XML, YLB: data analysis and discussion. JZ: design, analysis, discussion and article revision. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Y. L. Bai, X. M. Li or J. Zhou.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of competing interest.

Ethical approval

The NHANES protocol was approved by the institutional review board of the Centers for Disease Control and Prevention. As a matter of policy, our local Research Ethics Committee does not review secondary analyses of duly approved, publicly available data. All animal experiments were approved by the Animal Care and Use Committee at Air Force Medical University and were in accordance with the declaration of the National Institute of Health Guide for Care and Use of Laboratory Animals.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40618_2023_2253_MOESM1_ESM.tif

Supplementary file1 Fig. 1 The association between serum lipid level, blood glucose level, and eGFR. A, B Comparing with the control group, the median values of TG and TC in the DM, IFG, and IGT groups were significantly higher (all with P < 0.001). C, D Pearson correlation analysis indicated that levels of TG and TC were negatively associated with eGFR (all with P < 0.001). TG triglyceride, TC total cholesterol, IGT impaired glucose tolerance, IFG impaired fasting glucose, DM diabetes mellitus, eGFR estimated glomerular filtration rate. (TIF 8184 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Li, B., Xu, Q. et al. DACH1 attenuated PA-induced renal tubular injury through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway. J Endocrinol Invest (2023). https://doi.org/10.1007/s40618-023-02253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-023-02253-7

Keywords

Navigation