Skip to main content

Advertisement

Log in

Lower adiponectin is associated with higher anthropometry and insulin resistance but not with low cardiorespiratory fitness in adolescents

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze the relationship between adiposity, cardiometabolic risk and cardiorespiratory fitness (CRF) according to different groups of adiponectin concentration.

Methods

255 adolescents of both sexes, aged 11–17 years old, participated. Anthropometric and biochemical parameters such as body mass, height, abdominal circumference (AC), waist circumference (WC), fat mass, fat-free mass, total cholesterol (TC), high-density lipoprotein (HDL-c), low-density lipoprotein (LDL-c), triglycerides (TG), glucose, insulin, adiponectin, blood pressure, peak oxygen consumption (VO2peak) were measured. Body mass index (BMI), z-score BMI (BMI-z), triponderal mass index (TMI), waist-to-height ratio (WHtR), homeostasis model to assessment insulin resistance (HOMA-IR), and quantitative insulin sensitivity check index (QUICKI) were calculated. Adiponectin was categorized: low adiponectin concentration (LAC  ≤ 5.18 µg/mL−1), intermediate (IAC = 5.18 and 7.63 µg/mL−1) and high (HAC ≥ 7.63 µg/ml−1).

Results

LAC showed higher BMI, BMI-z and TMI than the other groups (p < 0.05) and higher AC, WC and WHtR that the HAC (p < 0.05). IAC showed lower values of TC, LDL-c and TG, and the LAC presented the highest values of insulin, HOMA-IR and QUICKI (p < 0.05) to the IAC and HAC. HAC presented the lower VO2peak than the other groups (p < 0.01). BMI, TMI, glucose, insulin, HOMA-IR showed inverse, and QUICKI a direct and weak correlation with adiponectin (p < 0.05). No significant association was found between adiponectin and VO2peak (p > 0.05).

Conclusion

The LAC group had higher means in the anthropometric variables and the worst results related to insulin resistance and sensitivity. Thus, adiponectin may play an important role in obesity and reduced concentration may be a factor in the development of obesity-associated morbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lee ES, Park SS, Kim E, Yoon YS, Ahn HY, Park CY et al (2013) Association between adiponectin levels and coronary heart disease and mortality: a systematic review and meta-analysis. Int J Epidemiol 42(4):1029–1039

    Article  Google Scholar 

  2. Parker-Duffen JL, Walsh K (2014) Cardiometabolic effects of adiponectin. Best Pract Res 28(1):81–91

    Article  CAS  Google Scholar 

  3. Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP (2013) Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 18(3):323–360

    Article  PubMed  CAS  Google Scholar 

  4. Lewitt MS, Baker JS (2020) Relationship between abdominal adiposity, cardiovascular fitness, and biomarkers of cardiovascular risk in British adolescents. J Sport Health Sci 9(6):634–644

    Article  PubMed  Google Scholar 

  5. Ghadge AA, Khaire AA, Kuvalekar AA (2018) Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev 39:151–158

    Article  PubMed  CAS  Google Scholar 

  6. Choi SH, Ku EJ, Hong ES, Lim S, Kim KW, Moon JH et al (2015) High serum adiponectin concentration and low body mass index are significantly associated with increased all-cause and cardiovascular mortality in an elderly cohort, “adiponectin paradox”: The Korean Longitudinal Study on Health and Aging (KLoSHA). Int J Cardiol 183:91–97

    Article  PubMed  Google Scholar 

  7. Agostinis-Sobrinho CA, Santos R, Moreira C, Abreu S, Lopes L, Oliveira-Santos J et al (2016) Association between serum adiponectin levels and muscular fitness in Portuguese adolescents: LabMed Physical Activity Study. Nutr Metab Cardiovasc Dis 26(6):517–524

    Article  PubMed  CAS  Google Scholar 

  8. Martinez-Gomez D, Eisenmann JC, Gomez-Martineza S, Veses A, Romeo J, Veiga OL, Marcos A et al (2012) Associations of physical activity and fitness with adipocytokines in adolescents: the AFINOS study. Nutr Metab Cardiovasc Dis 22(3):252–259

    Article  PubMed  CAS  Google Scholar 

  9. Agostinis-Sobrinho CA, Abreu S, Moreira C, Lopes L, García-Hermoso A, Ramírez-Vélez R et al (2017) Muscular fitness, adherence to the Southern European Atlantic Diet and cardiometabolic risk factors in adolescents. Nutr Metab Cardiovasc Dis 27(8):695–702

    Article  PubMed  CAS  Google Scholar 

  10. Bugge A, El-Naaman B, McMurray RG, Froberg K, Nielsen CK, Müller K, Andersen LB (2012) Inflammatory markers and clustered cardiovascular disease risk factors in Danish adolescents. Horm Res Paediatr 78:288–296

    Article  PubMed  CAS  Google Scholar 

  11. Isasi CR, Strizich GM, Kaplan R, Daviglus ML, Sotres-Alvarez D, Vidot DC et al (2018) The association of cardiorespiratory fitness with cardiometabolic factors, markers of inflammation, and endothelial dysfunction in Latino youth: Findings from HCHS/SOL Youth. Ann Epidemiol 28(9):583–589

    Article  PubMed  PubMed Central  Google Scholar 

  12. Silva LR, Cavaglieri C, Lopes WA, Pizzi J, Coelho-e-Silva MJ, Leite N (2014) Endothelial wall thickness, cardiorespiratory fitness and inflammatory markers in obese and non-obese adolescents. Braz J Phys Ther 18(1):47–55

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brand C, Leite N, Lopes WA, Dias A, Silva LR, Gaya AR et al (2019) Adiposity and adipocytokines: moderator role of cardiorespiratory fitness and pubertal stage in girls. J Pediatr Endocrinol Metab 32(3):239–246

    Article  PubMed  CAS  Google Scholar 

  14. World Health Organization (2020) WHO guidelines on physical activity and sedentary behaviour. World Health Organization, Geneva

    Google Scholar 

  15. Ruiz JR, Huybrechts I, Cuenca-García M, Artero EG, Labayen I, Meirhaeghe A et al (2015) Cardiorespiratory fitness an ideal cardiovascular health in European adolescents. Heart 101(10):766–773

    Article  PubMed  Google Scholar 

  16. Ekblom-Bak E, Ekblom B, Söderling J, Börjesson M, Blom V, Kallings LV et al (2019) Sex- and age-specific associations between cardiorespiratory fitness, CVD morbidity and all-cause mortality in 266.109 adults. Prev Med 127:105799

    Article  PubMed  Google Scholar 

  17. Moore SA, McKay HA, MacDonald H, Nettlefold L, Baxter-Jones AD, Cameron N et al (2015) Enhancing a somatic maturity prediction model. Med Sci Sports Exerc 47(8):1755–1464

    Article  PubMed  Google Scholar 

  18. Lohman TG, Roche AF, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics, Champaign

    Google Scholar 

  19. Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

    Article  PubMed  PubMed Central  Google Scholar 

  20. Houtkooper LB, Going SB, Lohman TG, Roche AF, Van Loan M (1992) Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol 72(1):366–373

    Article  PubMed  CAS  Google Scholar 

  21. Heyward VH (2001) ASEP methods recommendation: body composition assessment. J Exerc Physiol Online 4(4):1–12

    Google Scholar 

  22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  PubMed  CAS  Google Scholar 

  23. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85(7):2402–2410

    Article  PubMed  CAS  Google Scholar 

  24. Barroso WKS, Rodrigues CIS, Bortolotto LA et al (2021) Diretrizes Brasileiras de Hipertensão Arterial - 2020. Arq Bras Cardiol 116(3):516–658

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37(1):153–156

    Article  PubMed  CAS  Google Scholar 

  26. Haukoos JS, Lewis RJ (2005) Advanced statistics: bootstrapping confidence intervals for statistics with “difficult” distributions. Acad Emerg Med 12(4):360–365

    PubMed  Google Scholar 

  27. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1(3):98–101

    Article  Google Scholar 

  28. Jain V, Kumar A, Agarwala A, Vikram N, Ramakrishnan L (2017) Adiponectin, interleukin-6 and high-sensitivity c-reactive protein levels in overweight/obese Indian children. Indian Pediatr 54(10):848–850

    Article  PubMed  Google Scholar 

  29. Lopes WA, Leite N, Silva LR, Brunelli DT, Gáspari AF, Radominski RB et al (2016) Effects of 12 weeks of combined training without caloric restriction on inflammatory markers in overweight girls. J Sports Sci 34(20):1902–1912

    Article  PubMed  Google Scholar 

  30. Bramante CT, Palzer EF, Rudser KD, Ryder JR, Fox CK, Bomberg EM et al (2022) BMI metrics and their association with adiposity, cardiometabolic risk factors, and biomarkers in children and adolescents. Int J Obes 46(2):359–365

    Article  CAS  Google Scholar 

  31. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V (2019) Obesity and dyslipidemia. Metabolism 92:71–81

    Article  PubMed  CAS  Google Scholar 

  32. Tozo TAA, Pereira BO, Menezes Junior FJ, Montenegro CM, Moreira CM, Leite N (2020) Hypertensive measures in schoolchildren: risk of central obesity and protective effect of moderate-to-vigorous physical activity. Arq Bras Cardiol 115(1):42–49

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thota P, Perez-Lopez FR, Benites-Zapata VA, Pasupuleti V, Hernandez AV (2017) Obesity-related insulin resistance in adolescents: a systematic review and meta-analysis of observational studies. Gynecol Endocrinol 33(3):179–184

    Article  PubMed  CAS  Google Scholar 

  34. Cândido APC, Geloneze B, Calixto A, Vasques ACJ, Freitas RN, Freitas SN, Machado-Coelho GLL (2021) Adiponectin, HOMA-Adiponectin, HOMA-IR in children and adolescents: Ouro Preto study. Indian J Pediatr 88(4):336–344

    Article  PubMed  Google Scholar 

  35. Faria-Neto JR, Bento VFR, Baena CP, OlandoskiGonçalves MLGO, Abreu GA et al (2016) ERICA: prevalence of dyslipidemia in Brazilian adolescentes. Rev Saude Publica 50(1):1s–10s

    Google Scholar 

  36. Yanai H, Yoshida H (2019) Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. Int J Mol Sci 20(5):1190–1215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Afiune BHT, Neto A et al (2017) Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol 109(2):1–76

    PubMed  Google Scholar 

  38. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946

    Article  PubMed  CAS  Google Scholar 

  39. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295

    Article  PubMed  CAS  Google Scholar 

  40. Yang L, Li B, Zhao Y, Zhang Z (2019) Prognostic value of adiponectin level in patients with coronary artery disease: a systematic review and meta-analysis. Lipids Health Dis 18(1):227–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wan Mohd Zin RM, Jalaludin MY, Yahya A, Nur ZatiIwani AK, Md Zain F, Hong JYH et al (2022) Prevalence and clinical characteristics of metabolically healthy obese versus metabolically unhealthy obese school children. Front Endocrinol 13:971202

    Article  Google Scholar 

  42. Rupérez AI, Olza J, Gil-Campos M, Leis R, Bueno G, Aguilera CM et al (2018) Cardiovascular risk biomarkers and metabolically unhealthy status in prepubertal children: Comparison of definitions. Nutr Metab Cardiovasc Dis 28(5):524–530

    Article  PubMed  Google Scholar 

  43. Agostinis-Sobrinho CA, Moreira C, Abreu S, Lopes L, Oliveira-Santos J, Steene-Johannessen J et al (2017) Serum adiponectin levels and cardiorespiratory fitness in non-overweight and overweight Portuguese adolescents: the LabMed physical activity study. Pediatr Exerc Sci 29(2):237–244

    Article  PubMed  Google Scholar 

  44. Steene-Johannessen J, Andersen LB, Anderssen SA (2013) Adiposity, aerobic fitness, muscle fitness, and markers of inflammation in children. Med Sci Sports Exerc 45(4):714–721

    Article  PubMed  CAS  Google Scholar 

  45. Agostinis-Sobrinho CA, Mendes EL, Moreira C, Abreu S, Lopes L, Oliveira-Santos J et al (2017) Association between leptin, adiponectin, and leptin/adiponectin ratio with clustered metabolic risk factors in Portuguese adolescents: the LabMed physical activity study. Ann Nutr Metab 70:321–328

    Article  PubMed  CAS  Google Scholar 

  46. Emken BA, Richey J, Belcher B, Hsu YW, Spruijt-Metz D (2010) Objectively measured physical activity is negatively associated with plasma adiponectin levels in minority female youth. Int J Pediatr Endocrinol 2010:846070

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ciccone MM, Faienza MF, Altomare M, Nacci C, Montagnani M, Valente F et al (2016) Endothelial and metabolic function interactions in overweight/obese children. J Atheroscler Thromb 23(8):950–959

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ortega FB, Ruiz JR, Labayen I, Lavie CJ, Blair SN (2018) The Fat but Fit paradox: what we know and don’t know about it. Br J Sports Med 52(3):151–153

    Article  PubMed  Google Scholar 

Download references

Funding

Study was financed by Fundação Araucária-PR / SESA-PR / CNPq / MS-Decit—PPSUS. Study was financed in part by the CAPES—Finance Code 001. MCT was funded by CNPq—Postdoctoral. NL was funded by CNPq—Research Productivity.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by MCT and NL, as well as reviewer by TAAT, WAL, LRS, JP, JM, and NL. Concept and design: MCT, PRPC, FJMJ, MFAL, WAL, LRS, JP, and NL. Methodology: MCT, PRPC, FJMJ, MFAL, WAL, LRS, JP, and NL. Data acquisition: MCT, PRPC, MFAL, WAL, LRS, and NL. Supervision: NL; Data analysis and interpretation: MCT and NL. All approved the final version to be submitted.

Corresponding author

Correspondence to M. C. Tadiotto.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests and that they have no professional relationships that would benefit from the results of this study.

Research involving Human Participants and/or Animals

This study was performed in line with the principles of the Declaration of Helsinki. Study protocol has been approved by the Ethics Committee of Research in Humans of UniDBSCO University Center (CAAE 62963916.0.0000.5223/2017).

Informed consent

Parents/legal guardians and adolescents signed the terms of consent for participation in the research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadiotto, M.C., Corazza, P.R.P., Menezes Junior, F.J. et al. Lower adiponectin is associated with higher anthropometry and insulin resistance but not with low cardiorespiratory fitness in adolescents. J Endocrinol Invest 47, 307–314 (2024). https://doi.org/10.1007/s40618-023-02145-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02145-w

Keywords

Navigation