Skip to main content
Log in

The association between dietary selenium intake and Hashimoto’s thyroiditis among US adults: National Health and Nutrition Examination Survey (NHANES), 2007–2012

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Selenium has been shown to influence the pathological processes and physiological functions of thyroid. Although growing evidence has shown that selenium can improve the treatment of Hashimoto’s thyroiditis (HT), there is a need to evaluate the association between dietary selenium intake and HT in a large cross-sectional study. This study explored the association between dietary selenium intake and HT based on the National Health reand Nutrition Examination Survey (NHANES) database (2007–2012).

Methods

A total of 8756 of 30,442 participants were included in the study. Dietary selenium intake was the independent variable, while HT was the dependent variable. In addition, the relative importance of the selected variables was determined using the XGBoost model. A smooth curve was constructed based on the fully adjusted model to investigate the potential linear relationship between dietary selenium intake and HT. Smooth curves were also constructed to explore the linear/non-linear relationship between dietary selenium intake and thyroid peroxidase antibody (TPOAb)/ thyroglobulin antibody (TgAb).

Results

The mean age of the enrolled participants was 44.35 years (± 20.92). The risk of HT was significantly reduced by a 35% per-unit increase in dietary selenium intake after fully adjusting for covariates according to the model (log2-transformed data; OR 0.65; 95% CI 0.51, 0.83). The XGBoost model revealed that dietary selenium intake was the most important variable associated with Hashimoto’s thyroiditis. Dietary selenium intake (Log2-transformed) was negatively correlated with TPOAb levels [− 16.42 (− 22.18, − 10.65), P < 0.0001], while a non-linear relationship was observed between dietary selenium intake and TgAb with an inflection point of 6.58 (95.67 μg, Log2-transformed).

Conclusion

Dietary selenium intake is independently and inversely associated with HT risk. Moreover, dietary selenium intake is negatively correlated with TPOAb levels and non-linearly correlated with TGAb levels. Therefore, dietary selenium intake may be a safe and low-cost alternative for the prevention and treatment of HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets in this article are available in the public repository database. The authors do not own the data. National Health and Nutrition Examination Survey data are available from the National Center for Health Statistics (https://www.cdc.gov/nchs/nhanes/).

References

  1. Ehlers M, Schott M (2014) Hashimoto’s thyroiditis and papillary thyroid cancer: are they immunologically linked? Trends Endocrinol Metab 25(12):656–664. https://doi.org/10.1016/j.tem.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  2. Xu S, Huang H, Qian J et al (2021) Prevalence of Hashimoto thyroiditis in adults with papillary thyroid cancer and its association with cancer recurrence and outcomes. JAMA Netw Open 4(7):e2118526. https://doi.org/10.1001/jamanetworkopen.2021.18526

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mintziori G, Adamidou F, Kita M (2015) Hashimoto’s thyroiditis and papillary thyroid cancer: polyglandular hints. Trends Endocrinol Metab 26(8):395. https://doi.org/10.1016/j.tem.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  4. Rizzo M, Rossi RT, Bonaffini O et al (2010) Increased annual frequency of Hashimoto’s thyroiditis between years 1988 and 2007 at a cytological unit of Sicily. Ann Endocrinol 71(6):525–534. https://doi.org/10.1016/j.ando.2010.06.006

    Article  CAS  Google Scholar 

  5. Li L, Ying YX, Liang J et al (2020) Urinary iodine and genetic predisposition to Hashimoto’s thyroiditis in a Chinese Han Population: a case-control study. Thyroid 30(12):1820–1830. https://doi.org/10.1089/thy.2020.0094

    Article  CAS  PubMed  Google Scholar 

  6. Caturegli P, De Remigis A, Rose NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 13(4–5):391–397. https://doi.org/10.1016/j.autrev.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  7. Hu S, Rayman MP (2017) Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid 27(5):597–610. https://doi.org/10.1089/thy.2016.0635

    Article  CAS  PubMed  Google Scholar 

  8. Ajjan RA, Weetman AP (2015) The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm Metab Res 47(10):702–710. https://doi.org/10.1055/s-0035-1548832

    Article  CAS  PubMed  Google Scholar 

  9. Choi IY, Lee C, Longo VD (2017) Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol 455:4–12. https://doi.org/10.1016/j.mce.2017.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomer Y, Huber A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmu 32(3–4):231–239. https://doi.org/10.1016/j.jaut.2009.02.007

    Article  CAS  Google Scholar 

  11. Ruggeri RM, Giovinazzo S, Barbalace MC et al (2021) Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid 31(1):96–105. https://doi.org/10.1089/thy.2020.0299

    Article  CAS  PubMed  Google Scholar 

  12. Petersen M, Knudsen N, Carlé A et al (2019) Increased incidence rate of hypothyroidism after iodine fortification in Denmark: a 20-year prospective population-based study. J Clin Endocrinol Metab 104(5):1833–1840. https://doi.org/10.1210/jc.2018-01993

    Article  PubMed  Google Scholar 

  13. Teng W, Shan Z, Teng X et al (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354(26):2783–2793. https://doi.org/10.1056/NEJMoa054022

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, He W, Li Q et al (2019) U-shaped relationship between iodine status and thyroid autoimmunity risk in adults. Eur J Endocrinol 181(3):255–266. https://doi.org/10.1530/eje-19-0212

    Article  CAS  PubMed  Google Scholar 

  15. Inoue K, Leung AM (2022) For iodine-rich Japan, what’s the right amount of dietary iodine? J Clin Endocrinol Metab 107(6):e2634–e2635. https://doi.org/10.1210/clinem/dgac030

    Article  PubMed  Google Scholar 

  16. Köhrle J (2015) Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 22(5):392–401. https://doi.org/10.1097/med.0000000000000190

    Article  PubMed  Google Scholar 

  17. Jain RB (2014) Thyroid function and serum copper, selenium, and zinc in general US population. Biol Trace Elem Res 159(1–3):87–98. https://doi.org/10.1007/s12011-014-9992-9

    Article  CAS  PubMed  Google Scholar 

  18. Köhrle J (2013) Pathophysiological relevance of selenium. J Endocrinol Invest 36(10):1–7

    PubMed  Google Scholar 

  19. Liu Y, Huang H, Zeng J, Sun C (2013) Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: a cross-sectional study. BMC Public Health 13:1153. https://doi.org/10.1186/1471-2458-13-1153

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duntas LH, Mantzou E, Koutras DA (2003) Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol 148(4):389–393. https://doi.org/10.1530/eje.0.1480389

    Article  CAS  PubMed  Google Scholar 

  21. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184(3):455–465. https://doi.org/10.1677/joe.1.05971

    Article  CAS  PubMed  Google Scholar 

  22. Schomburg L (2016) Dietary selenium and human health. Nutrients 9(1):22. https://doi.org/10.3390/nu9010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/s0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  24. Hu Y, Feng W, Chen H et al (2021) Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: a prospective randomized-controlled trial. Clin Transl Sci 14(4):1390–1402. https://doi.org/10.1111/cts.12993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wichman J, Winther KH, Bonnema SJ, Hegedüs L (2016) Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid 26(12):681–1692. https://doi.org/10.1089/thy.2016.0256

    Article  CAS  Google Scholar 

  26. van Zuuren EJ, Albusta AY, Fedorowicz Z, Carter B, Pijl H (2014) Selenium supplementation for Hashimoto’s thyroiditis: summary of a cochrane systematic review. Eur Thyroid J 3(1):25–31. https://doi.org/10.1159/000356040

    Article  CAS  PubMed  Google Scholar 

  27. Winther KH, Bonnema SJ, Hegedüs L (2017) Is selenium supplementation in autoimmune thyroid diseases justified? Curr Opin Endocrinol Diabetes Obe 24(5):348–355. https://doi.org/10.1097/med.0000000000000356

    Article  CAS  Google Scholar 

  28. Nhanes-National Health and Nutrition Examination Survey Homepage. Available Online: https://www.cdc.gov/nchs/nhanes/index.htm. Accessed on 25 Apr 2022

  29. Approval., N-NRERBE. Nhanes-Nchs Research Ethics Review Board (Erb) Approval. Available Online: https://www.cdc.gov/nchs/nhanes/irba98.htm. Accessed on 25 Apr 2022

  30. Nhanes—Survey Methods and Analytic Guidelines. Available Online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx. Accessed on 26 Apr 2022

  31. Zhu L, Zhou B, Zhu X et al (2022) association between body mass index and female infertility in the United States: data from national health and nutrition examination survey 2013–2018. Int J Gen Med 15:1821–1831. https://doi.org/10.2147/ijgm.S349874

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei C, Tian L, Jia B et al (2022) Association between serum triglycerides and prostate specific antigen (PSA) among US males: national health and nutrition examination survey (NHANES), 2003–2010. Nutrients 14(7):1325. https://doi.org/10.3390/nu14071325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eskes SA, Endert E, Fliers E et al (2014) Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol 80(3):444–451. https://doi.org/10.1111/cen.12284

    Article  CAS  Google Scholar 

  34. Calissendorff J, Mikulski E, Larsen EH et al (2015) A Prospective investigation of graves’ disease and selenium: thyroid hormones, auto-antibodies and self-rated symptoms. Eur Thyroid J 4(2):93–98. https://doi.org/10.1159/000381768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turker O, Kumanlioglu K, Karapolat I, Dogan I (2006) Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J Endocrinol 190(1):151–156. https://doi.org/10.1677/joe.1.06661

    Article  CAS  PubMed  Google Scholar 

  36. Bhuyan AK, Sarma D, Saikia UK (2012) Selenium and the thyroid: a close-knit connection. Indian J Endocrinol Metab 16:S354-355. https://doi.org/10.4103/2230-8210.104090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlé A, Laurberg P, Knudsen N et al (2006) Thyroid peroxidase and thyroglobulin auto-antibodies in patients with newly diagnosed overt hypothyroidism. Autoimmunity 39(6):497–503. https://doi.org/10.1080/08916930600907913

    Article  CAS  PubMed  Google Scholar 

  38. Chen CR, Hamidi S, Braley-Mullen H et al (2010) Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology 151(9):4583–4593. https://doi.org/10.1210/en.2010-0321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinbrenner H, Duntas LH, Rayman MP (2022) The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 50:102236. https://doi.org/10.1016/j.redox.2022.102236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drutel A, Archambeaud F, Caron P (2013) Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol 78(2):155–164. https://doi.org/10.1111/cen.12066

    Article  CAS  Google Scholar 

  41. Gärtner R, Gasnier BC, Dietrich JW et al (2002) Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab 87(4):1687–1691. https://doi.org/10.1210/jcem.87.4.8421

    Article  PubMed  Google Scholar 

  42. Mazokopakis EE, Papadakis JA, Papadomanolaki MG et al (2007) Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto’s thyroiditis. Thyroid 17(7):609–612. https://doi.org/10.1089/thy.2007.0040

    Article  CAS  PubMed  Google Scholar 

  43. Karanikas G, Schuetz M, Wahl K et al (2005) Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto’s thyroiditis. Clin Endocrinol 63(2):191–196. https://doi.org/10.1111/j.1365-2265.2005.02324.x

    Article  Google Scholar 

  44. Turker O, Karapolat I (2006) Selenium treatment in autoimmune thyroiditis. Thyroid 16(12):1326

    PubMed  Google Scholar 

  45. Bleys J, Navas-Acien A, Guallar E (2007) Selenium and diabetes: more bad news for supplements. Ann Intern Med 147(4):271–272. https://doi.org/10.7326/0003-4819-147-4-200708210-00177

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you so much for one tree’s R package support.

Funding

This study was funded by the National Natural Science Foundation of China, grant number 82103199 and the Medical and Health Research Program of Zhejiang Province, grant number 2021435899 and Zhejiang Province Postdoctoral Research Excellence Funding Project, grant number ZJ2021167 and Zhejiang Provincial Natural Science Foundation, grant number LY19H180004 and Medical and Health Research Program of Zhejiang Province, grant number 2023KY420 and The incubation project of the First Affiliated Hospital of Wenzhou Medical University, grant number FHY2019068 and Zhejiang Provincial Natural Science Foundation, grant number LY23H160024 and Lishui Municipal Science and Technology Program, grant number 2023GYX05.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design, LZ and GZ; Data, YG, YC, and SH; Formal analysis, LZ, LL and GZ; Writing—original draft, LZ, YC, and YG; Writing—review and editing and critical analysis of the results, LZ, YC, YG, FS, YH, LL and GZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to L. Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was conducted following Declaration of Helsinki (revised 2013). National Health and Nutrition Examination Survey protocol was approved by the Ethics Review Committee of the National Center for Health Statistics (NCHS).

Informed consent

All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Cai, Y., Guo, Y. et al. The association between dietary selenium intake and Hashimoto’s thyroiditis among US adults: National Health and Nutrition Examination Survey (NHANES), 2007–2012. J Endocrinol Invest 46, 1385–1395 (2023). https://doi.org/10.1007/s40618-022-01987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01987-0

Keywords

Navigation