Skip to main content

Advertisement

Log in

Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus (T2DM) and insulin resistance. Tribbles homolog 3 (TRB3) is a pseudokinase upregulated by ER stress and hyperglycemia. Glucose-regulated protein 78 (GRP78) is an ER stress protein that is overexpressed under ER stress conditions. The current study aimed to investigate serum levels of TRB3 and GRP78, as an ER stress marker, in T2DM patients and their correlations with the metabolic profile.

Methods

Fifty-seven patients with type 2 diabetes and 23 healthy control subjects were evaluated for serum concentrations of TRB3, GRP78, and AGEs by enzyme-linked immunosorbent assay (ELISA). Fasting plasma glucose (FPG), HbA1c, lipid profile, TNF-α and insulin were also measured, and insulin resistance was calculated using a homeostasis model assessment of insulin resistance (HOMA-IR).

Results

Serum concentrations of TRB3, GRP78, AGEs, and TNF-α were significantly higher in T2DM patients compared to the healthy controls. Moreover, a statistically significant positive correlation was observed between plasma concentrations of TRB3 and FPG, HbA1c, HOMA-IR, and AGE. GRP78 levels were positively correlated with HbA1c and AGEs. There was also a positive correlation between GRP78 and TRB3. AGEs levels were positively correlated with the levels of FPG, HbA1c, HOMA-IR, and TNF-α.

Conclusion

The current findings suggest that TRB3 and GRP78 may contribute to the pathogenesis of T2DM and might be considered as a therapeutic targets for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    Article  CAS  Google Scholar 

  2. Nakatani Y et al (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280(1):847–851

    Article  CAS  PubMed  Google Scholar 

  3. Xu J et al (2012) Endoplasmic reticulum stress and diabetic cardiomyopathy. Exp Diabetes Res 2012:5

    Article  Google Scholar 

  4. Ohoka N et al (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. EMBO J 24(6):1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang M et al (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65(18):2924–2932

    Article  CAS  PubMed  Google Scholar 

  6. Wang M et al (2017) TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway. Int J Mol Med 40(1):130–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du K et al (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–1577

    Article  CAS  PubMed  Google Scholar 

  8. Koo S-H et al (2004) PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat Med 10(5):530–534

    Article  CAS  PubMed  Google Scholar 

  9. Nourbakhsh M et al (2017) Evaluation of plasma TRB3 and sestrin 2 levels in obese and normal-weight children. Child Obes 13(5):409–414

    Article  PubMed  Google Scholar 

  10. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26(8):504–510

    Article  CAS  PubMed  Google Scholar 

  11. Khadir A et al (2016) Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone. Metabolism 65(9):1409–1420

    Article  CAS  PubMed  Google Scholar 

  12. Lee ASJCR (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67(8):3496–3499

    Article  CAS  PubMed  Google Scholar 

  13. Wang M et al (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11(9):2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim JH et al (2018) Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity. FASEB J 32(4):2292–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liñares-Pose L et al (2018) Genetic targeting of GRP78 in the VMH improves obesity independently of food intake. Genes 9(7):357

    Article  PubMed Central  Google Scholar 

  16. Gonzalez-Gronow M et al (2009) GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 11(9):2299–2306

    Article  CAS  PubMed  Google Scholar 

  17. Rossi G, Association AD (2018) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Google Scholar 

  18. Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6(1):45–86

    Article  CAS  PubMed  Google Scholar 

  19. Keskin M et al (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):e500–e503

    Article  PubMed  Google Scholar 

  20. Boden G et al (2008) Increase in endoplasmic reticulum stress–related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57(9):2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Özcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    Article  PubMed  Google Scholar 

  22. Flamment M et al (2012) New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 23(8):381–390

    Article  CAS  PubMed  Google Scholar 

  23. Wang D et al (2006) Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose cycling in liver cells. Endocrinology 147(1):350–358

    Article  CAS  PubMed  Google Scholar 

  24. Xu L, Spinas GA, Niessen M (2010) ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Hormone Metabolic Res 42(9):643–651

    Article  CAS  Google Scholar 

  25. Corcoran CA et al (2005) Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Therapy 4(10):1063–1067

    Article  CAS  Google Scholar 

  26. Sowers JRJD (2012) Role of TRIB3 in diabetic and overnutrition-induced atherosclerosis. Diabetes 61(2):265–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ti Y et al (2011) TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60(11):2963–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu J et al (2010) Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metabol 298(3):E565–E576

    Article  CAS  Google Scholar 

  29. Oberkofler H et al (2010) Aberrant hepatic TRIB3 gene expression in insulin-resistant obese humans. Diabetologia 53(9):1971–1975

    Article  CAS  PubMed  Google Scholar 

  30. Gong H-P et al (2009) TRIB3 functional Q84R polymorphism is a risk factor for metabolic syndrome and carotid atherosclerosis. Diabetes Care 32(7):1311–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prudente S et al (2005) The functional Q84R polymorphism of mammalian Tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy. Diabetes 54(9):2807–2811

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W et al (2016) Skeletal muscle TRIB3 mediates glucose toxicity in diabetes and high-fat diet-induced insulin resistance. Diabetes 65(8):2380–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qian B et al (2008) TRIB3 is implicated in glucotoxicity-and oestrogen receptor-stress-induced b-cell apoptosis. J Endocrinol 199(3):407

    Article  CAS  PubMed  Google Scholar 

  34. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

    Article  CAS  PubMed  Google Scholar 

  35. Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279(25):25935–25938

    Article  CAS  PubMed  Google Scholar 

  36. Sharma NK et al (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532–4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kammoun HL et al (2009) GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Investig 119(5):1201–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y et al (2015) The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res Bull 111:27–35

    Article  CAS  PubMed  Google Scholar 

  39. Laybutt D et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50(4):752–763

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L et al (2009) GRP78, but not protein-disulfide isomerase, partially reverses hyperglycemia-induced inhibition of insulin synthesis and secretion in pancreatic β-cells. J Biol Chem 284(8):5289–5298

    Article  CAS  PubMed  Google Scholar 

  41. Lindenmeyer MT et al (2008) Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 19(11):2225–2236

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Krieken R et al (2019) Cell surface expression of 78-kDa glucose-regulated protein (GRP78) mediates diabetic nephropathy. J Biol Chem 294(19):7755–7768

    Article  PubMed  PubMed Central  Google Scholar 

  43. Girona J et al (2019) The circulating GRP78/BiP is a marker of metabolic diseases and atherosclerosis: bringing endoplasmic reticulum stress into the clinical scenario. J Clin Med 8(11):1793

    Article  CAS  PubMed Central  Google Scholar 

  44. Ma N et al (2020) Expression of serum GRP78 and CHOP in endoplasmic reticulum stress pathways of chinese type 2 diabetic kidney disease patients (preprint)

  45. Diaz-Morales N et al (2018) Does metformin modulate endoplasmic reticulum stress and autophagy in type 2 diabetic peripheral blood mononuclear cells? Antioxid Redox Signal 28(17):1562–1569

  46. Teodoro-Morrison T et al (2013) GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice. Diabetologia 56(5):1057–1067

    Article  CAS  PubMed  Google Scholar 

  47. Adamopoulos C et al (2014) Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells. Clin Chem Lab Med 52(1):151–160

    Article  CAS  PubMed  Google Scholar 

  48. Özcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bañuls C et al (2017) Oxidative and endoplasmic reticulum stress is impaired in leukocytes from metabolically unhealthy vs healthy obese individuals. Int J Obesity 41(10):1556–1563

    Article  Google Scholar 

  50. Jousse C et al (2007) TRB3 inhibits the transcriptional activation of stress-regulated genes by a negative feedback on the ATF4 pathway. J Biol Chem 282(21):15851–15861

    Article  CAS  PubMed  Google Scholar 

  51. Gaspar RC et al (2020) Aging is associated with increased TRB3, ER stress, and hepatic glucose production in the liver of rats. Exp Gerontol 139:111021

    Article  CAS  PubMed  Google Scholar 

  52. Su X-D et al (2011) Elevated serum levels of advanced glycation end products and their monocyte receptors in patients with type 2 diabetes. Arch Med Res 42(7):596–601

    Article  CAS  PubMed  Google Scholar 

  53. Uribarri J et al (2015) Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J Clin Endocrinol Metab 100(5):1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hachiya H et al (2014) Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells. J Hepatobiliary Pancreat Sci 21(2):134–141

    Article  PubMed  Google Scholar 

  55. Shu T et al (2011) AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS ONE 6(4):e18782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pinto-Junior DC et al (2018) Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  57. Lily M, Godwin MJCFP (2009) Treating prediabetes with metformin: systematic review and meta-analysis. Can Family Phys 55(4):363–369

    Google Scholar 

  58. Jung TW et al (2012) Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem biophys Res 417(1):147–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences (grant number 1396-02-97-2170) and a grant from Iran University of Medical Science (grant number 33203).

Author information

Authors and Affiliations

Authors

Contributions

RS conducted and supervised the study design and contributed to the writing of the manuscript. M.N. conducted the study and edited the manuscript. NH and MN contributed to sample collection and preparation SEM and HZ performed the immunoassay experimental work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Sharifi.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

This study was performed in compliance with the ethical standards of the Declaration of Helsinki and Iran University of Medical Sciences. The study was approved by Ethics Committee of Iran University of Medical Sciences and Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences.

Informed consent

All subjects gave their written informed consent before participating in the study.

Data availability statement

The data and analysis of the present study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourbakhsh, M., Sharifi, R., Heydari, N. et al. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress. J Endocrinol Invest 45, 649–655 (2022). https://doi.org/10.1007/s40618-021-01683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01683-5

Keywords

Navigation