Skip to main content

Advertisement

Log in

Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using Combinatorial Strategies to Overcome Drug Resistance

  • Molecular Biotechnology of Adult Stem Cells (G Stein, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancer is a major public health problem worldwide. In aggressive cancers, which are heterogeneous in nature, there exists a paucity of targetable molecules that can be used to predict outcome and response to therapy in patients, especially those in the high-risk category with a propensity to relapse following chemotherapy. This review addresses the challenges pertinent to treating aggressive cancer cells with inherent stem cell properties, with a special focus on triple-negative breast cancer (TNBC).

Recent Findings

Plasticity underlies the cancer stem cell (CSC) phenotype in aggressive cancers like TNBC. Progenitors and CSCs implement similar signaling pathways to sustain growth, and the convergence of embryonic and tumorigenic signaling pathways has led to the discovery of novel oncofetal targets, rigorously regulated during normal development, but aberrantly reactivated in aggressive forms of cancer.

Summary

Translational studies have shown that Nodal, an embryonic morphogen, is reactivated in aggressive cancers, but not in normal tissues, and underlies tumor growth, invasion, metastasis, and drug resistance. Front-line therapies do not inhibit Nodal, but when a combinatorial approach is used with an agent such as doxorubicin followed by anti-Nodal antibody therapy, significant decreases in cell growth and viability occur. These findings are of special interest in the development of new therapeutic interventions that target the stem cell properties of cancer cells to overcome drug resistance and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  2. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10:955–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z, et al. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol. 2008;26:3153–8.

    Article  PubMed  Google Scholar 

  4. Meijnen P, Peterse JL, Antonini N, Rutgers EJ, van de Vijver MJ. Immunohistochemical categorisation of ductal carcinoma in situ of the breast. Br J Cancer. 2008;98:137–42.

    Article  CAS  PubMed  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Strizzi L, Hardy KM, Margaryan NV, Hillman DW, Seftor EA, Chen B, et al. Potential for the embryonic morphogen Nodal as a prognostic and predictive biomarker in breast cancer. Breast Cancer Res. 2012;14(3):R75. This study demonstrates for the first time the promise of Nodal as a prognostic and predictive biomarker in breast cancer

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Kirsammer G, Strizzi L, Margaryan NV, Gilgur A, Hyser M, Atkinson J, et al. Nodal signaling promotes a tumorigenic phenotype in human breast cancer. Semin Cancer Biol. 2014;29:40–50. This study was the first to directly downregulate Nodal and examine the consequences on multiple signaling pathways

  9. •• Bodenstine TM, Chandler GS, Reed DW, Margaryan NV, Gilgur A, Atkinson J, et al. Nodal expression in triple-negative breast cancer: cellular effects of its inhibition following doxorubicin treatment. Cell Cycle. 2016;15(9):1295–302. This study demonstrated the potential efficacy and rationale for using anti-Nodal therapy in combination with a front-line therapy, doxorubicin, for treating triple-negative breast cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–40. This original work is an extensive survey that classifies cutaneous, malignant melanoma based on gene expression profiling

    Article  CAS  PubMed  Google Scholar 

  11. Kirschmann DA, Seftor EA, Nieva DR, Mariano EA, Hendrix MJC. Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat. 1999;55(2):127–36.

    Article  CAS  PubMed  Google Scholar 

  12. • Hendrix MJC, Seftor EA, Kirschmann DA, Seftor REB. Molecular biology of breast cancer metastasis. Molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res. 2000;2(6):417–22. This is one of the earliest studies demonstrating the expression of vascular makers by aggressive breast cancer cells pertinent to vasculogenic mimicry

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Hendrix MJC, Seftor EA, Hess AR, Seftor REB. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3:411–21. This review summarizes the evidence supporting vasculogenic mimicry by aggressive tumor cells

    Article  CAS  PubMed  Google Scholar 

  14. •• van de Schaft DW, Seftor REB, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst. 2004;96(19):1473–7. This was the first study to demonstrate how and why angiogenesis inhibitors may not be effective in inhibiting vasculogenic mimicry in melanoma cells

    Article  PubMed  Google Scholar 

  15. van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005;65(24):11520–8.

    Article  PubMed  Google Scholar 

  16. •• Wagenblast E, Soto M, Gutiérrez-Ángel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 2015;520(7547):358–62. This key study demonstrated how vascular mimicry drives metastasis with respect to breast cancer heterogeneity

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13. This study correlated breast cancer metastatic capacity with the presence of functional cancer stem cells and a distinct molecular signature

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korkaya H, Wicha MS. HER-2, notch, and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res. 2009;15(6):1845–7.

    Article  CAS  PubMed  Google Scholar 

  22. D’Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 2015;14(3):779–87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol. 2009;10:91–103.

    Article  CAS  PubMed  Google Scholar 

  24. Schier AF. Nodal morphogens. Cold Spring Harb Perspect Biol 2009;1:a003459. Pauklin S, Vallier L. Activin/Nodal signalling in stem cells. Development 2015;142:607–619.

  25. • Postovit LM, Seftor EA, Seftor REB, Hendrix MJC. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets. 2007;11(4):497–505. This was one of the first studies to identify Nodal as a potential therapeutic target for melanoma

    Article  CAS  PubMed  Google Scholar 

  26. • Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature. 2000;403(6768):385–9. This is an excellent review of the importance of Nodal in embryogenesis

    Article  CAS  PubMed  Google Scholar 

  27. •• Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med. 2006;12(8):925–32. This was the landmark paper introducing Nodal, an embryonic morphogen, being reactivated in aggressive melanoma cells

    Article  CAS  PubMed  Google Scholar 

  28. Postovit LM, Costa FF, Bischof JM, Seftor EA, Wen B, Seftor REB, et al. The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J Cellular Bioch. 2007;101:908–17.

    Article  CAS  Google Scholar 

  29. •• Postovit LM, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, Wheaton WW, et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci U S A. 2008;105(11):4329–34. This study introduced a novel model showing that Nodal signaling in aggressive cancer cells can be regulated by signaling molecules, such as Lefty, in a human embryonic stem cell environment

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Costa FF, Seftor EA, Bischof JM, Kirschmann DA, Strizzi L, Arndt K, et al. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics. 2009;1(2):387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strizzi L, Hardy KM, Seftor EA, Costa FF, Kirschmann DA, Seftor RE, et al. Development and cancer: at the crossroads of Nodal and Notch signaling. Cancer Res. 2009;69:7131–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strizzi L, Postovit LM, Margaryan NV, Lipavsky A, Gadiot J, Blank C, et al. Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention. Expert Rev Dermatol. 2009;4:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol. 2013;45:885–98.

    Article  CAS  PubMed  Google Scholar 

  34. Postovit LM, Margaryan NV, Seftor EA, Strizzi L, Seftor REB, Hendrix MJC. Plasticity underlying multipotent tumor stem cells. In: Bagley RG, Teicher BA, editors. Cancer drug discovery and development: stem cells and cancer. USA: Humana Press; 2009. p. 99–112.

    Google Scholar 

  35. • Lawrence MG, Margaryan NV, Loessner D, Collins A, Kerr KM, Turner M, et al. Reactivation of embryonic Nodal signaling is associated with tumor progression and promotes the growth of prostate cancer. Prostate. 2011;71:1198–09. This was the first study showing a role for Nodal signaling in tumor progression and growth in prostate cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strizzi L, Sandomenico A, Margaryan NV, Foca A, Sanguigno L, Bodenstine TM, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6(33):34071–86.

    PubMed  PubMed Central  Google Scholar 

  37. Tomao F, Papa A, Zaccarelli E, Rossi L, Caruso D, Minozzi M, et al. Triple-negative breast cancer: new perspectives for targeted therapies. Onco Targets Ther. 2015;8:177–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahamodhossen YA, Liu W, Rong-Rong Z. Triple-negative breast cancer: new perspectives for novel therapies. Med Oncol. 2013;30:653.

    Article  PubMed  Google Scholar 

  39. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology. 2008;22:1233–43.

    PubMed  PubMed Central  Google Scholar 

  40. • Hardy KM, Strizzi L, Margaryan NV, Gupta K, Murphy GF, Scolyer RA, et al. Targeting Nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol Cancer Res. 2015;13(4):670–80. This study demonstrated the potential efficacy and rationale for using anti-Nodal therapy in combination with front-line therapies for treating melanoma

  41. •• Hendrix MJC, Kandela I, Mazar AP, Seftor EA, Seftor RE, Margaryan NV, et al. Targeting melanoma with front-line therapy does not abrogate Nodal-expressing tumor cells. Lab Investig. 2017;97(2):176–86. This was the first study that demonstrated that treating melanoma patients with the front line therapy, iBRAF, did not decrease the expression of Nodal in the patients’ tissue.

    Article  CAS  PubMed  Google Scholar 

  42. Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011;9:433–46.

    Article  CAS  PubMed  Google Scholar 

  43. Ahrlund-Richter L, Hendrix MJC. Oncofetal signaling as a target for cancer therapy. Semin Cancer Biol. 2014;29:1–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institute of General Medical Sciences U54GM104942 (NVM, EAS, REBS) and NIH/NCI R37CA59702 and RO1CA121205 (MJCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary J.C. Hendrix.

Ethics declarations

Conflict of Interest

Naira V. Margaryan declares that she has no conflicts of interest. Elisabeth A. Seftor, Richard E.B. Seftor, and Mary J.C. Hendrix are listed as co-inventors on Nodal-related patents and/or disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any raw data with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biotechnology of Adult Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaryan, N.V., Seftor, E.A., Seftor, R.E. et al. Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using Combinatorial Strategies to Overcome Drug Resistance. Curr Mol Bio Rep 3, 159–164 (2017). https://doi.org/10.1007/s40610-017-0067-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0067-5

Keywords

Navigation