Skip to main content
Log in

On a Characterization of Polynomials Among Rational Functions in Non-Archimedean Dynamics

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We study a question on characterizing polynomials among rational functions of degree \(>1\) on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value, from the viewpoint of dynamics and potential theory on the Berkovich projective line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar, S. S.: Local Analytic Geometry. World Scientific Publishing Co. Inc., River Edge (2001) (reprint of the 1964 original)

  2. Baker, M.: A finiteness theorem for canonical heights attached to rational maps over function fields. J. Reine Angew. Math. 626, 205–233 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Baker, M.H., Hsia, L.-C.: Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. 585, 61–92 (2005)

    Article  MathSciNet  Google Scholar 

  4. Baker, M.H., Rumely, R.: Equidistribution of small points, rational dynamics, and potential theory. Ann. Inst. Fourier (Grenoble) 56(3), 625–688 (2006)

    Article  MathSciNet  Google Scholar 

  5. Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  6. Benedetto, R.L.: Dynamics in one non-archimedean variable, Graduate Studies in Mathematics, vol. 198. American Mathematical Society, Providence (2019)

    Book  Google Scholar 

  7. Berkovich,  V.G.: Spectral theory and analytic geometry over non-Archimedean fields. In: Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

  8. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261. Springer, Berlin (1984) (a systematic approach to rigid analytic geometry)

  9. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6, 103–144 (1965)

    Article  MathSciNet  Google Scholar 

  10. Chambert-Loir, A.: Mesures et équidistribution sur les espaces de Berkovich. J. Reine Angew. Math. 595, 215–235 (2006)

    MathSciNet  MATH  Google Scholar 

  11. DeMarco, L.: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. 326(1), 43–73 (2003)

    Article  MathSciNet  Google Scholar 

  12. Favre, C., Jonsson, M.: The valuative tree. In: Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004)

  13. Favre, C., Rivera-Letelier, J.: Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335(2), 311–361 (2006)

    Article  MathSciNet  Google Scholar 

  14. Favre, C., Rivera-Letelier, J.: Théorie ergodique des fractions rationnelles sur un corps ultramétrique. Proc. Lond. Math. Soc. (3) 100(1), 116–154 (2010)

  15. Freire, A., Lopes, A., Mañé, R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 45–62 (1983)

    Article  MathSciNet  Google Scholar 

  16. Fresnel, J., Put, van der M.: Rigid analytic geometry and its applications. In: Progress in Mathematics, vol. 218. Birkhäuser Boston, Inc., Boston (2004)

  17. Hsia, L.-C.: Closure of periodic points over a non-Archimedean field. J. Lond. Math. Soc. (2), 62(3) , 685–700 (2000)

  18. Jonsson, M.: Dynamics on Berkovich spaces in low dimensions, Berkovich Spaces and Applications. pp. 205–366. Springer, New York (2015)

  19. Lalley, S.P.: Brownian motion and the equilibrium measure on the Julia set of a rational mapping. Ann. Probab. 20(4), 1932–1967 (1992)

    Article  MathSciNet  Google Scholar 

  20. Ljubich, M.J.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Theory Dyn. Syst. 3(3), 351–385 (1983)

    Article  MathSciNet  Google Scholar 

  21. Lopes, A.O.: Equilibrium measures for rational maps. Ergod. Theory Dyn. Syst. 6(3), 393–399 (1986)

    Article  MathSciNet  Google Scholar 

  22. Mañé, R., da Rocha, L.F.: Julia sets are uniformly perfect. Proc. Am. Math. Soc. 116(3), 251–257 (1992)

    Article  MathSciNet  Google Scholar 

  23. Mañé, R.: On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 27–43 (1983)

    Article  MathSciNet  Google Scholar 

  24. Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer Monographs in Mathematics. Springer, Berlin (2004)

    Book  Google Scholar 

  25. Oba, M.K., Pitcher, T.S.: A new characterization of the \(F\) set of a rational function. Trans. Am. Math. Soc. 166, 297–308 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Okuyama, Y.: Adelic equidistribution, characterization of equidistribution, and a general equidistribution theorem in non-archimedean dynamics. Acta. Arith. 161(2), 101–125 (2013)

    Article  MathSciNet  Google Scholar 

  27. Okuyama, Y.: Quantitative approximations of the Lyapunov exponent of a rational function over valued fields. Math. Z. 280(3–4), 691–706 (2015)

    Article  MathSciNet  Google Scholar 

  28. Okuyama, Y.: Effective divisors on the projective line having small diagonals and small heights and their application to adelic dynamics. Pac. J. Math. 280(1), 141–175 (2016)

    Article  MathSciNet  Google Scholar 

  29. Okuyama, Y., Stawiska, M.: Potential theory and a characterization of polynomials in complex dynamics. Conform. Geom. Dyn. 15, 152–159 (2011)

    Article  MathSciNet  Google Scholar 

  30. Okuyama, Y., Stawiska, M.: A generalization of the converse of Brolin’s theorem. Ann. Polon. Math. 123(1), 467–472 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Rivera-Letelier, J.: Dynamique, des fonctions rationnelles sur des corps locaux. Astérisque 287:xv, 147–230 (2003) (geometric methods in dynamics, II)

  32. Silverman, J. H.: The arithmetic of dynamical systems. In: Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)

  33. Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov. PhD thesis, Université Rennes 1 (2005)

  34. Woodcock, C.F., Smart, N.P.: \(p\)-adic chaos and random number generation. Exp. Math. 7(4), 333–342 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a very careful scrutiny and invaluable comments. The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (C), 15K04924 and 19K03541 and (B), 19H01798.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yûsuke Okuyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuyama, Y., Stawiska, M. On a Characterization of Polynomials Among Rational Functions in Non-Archimedean Dynamics. Arnold Math J. 6, 407–430 (2020). https://doi.org/10.1007/s40598-020-00145-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-020-00145-9

Keywords

Mathematics Subject Classification

Navigation