Skip to main content
Log in

A scoping review of multigenerational impacts of grandparental exposures on mental health in grandchildren

  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Purpose of Review

The multigenerational effects of grandparental exposures on their grandchildren’s mental health and neurodevelopment are gaining research attention. We conducted a scoping review to summarize the current epidemiological studies investigating pregnancy-related and environmental factors that affected grandparental pregnancies and mental health outcomes in their grandchildren. We also identified methodological challenges that affect these multigenerational health studies and discuss opportunities for future research.

Recent Findings

We performed a literature search using PubMed and Embase and included 18 articles for this review. The most investigated grandparental pregnancy-related factors were the grandparental age of pregnancy (N = 6), smoking during pregnancy (N = 4), and medication intake (N = 3). The most frequently examined grandchild outcomes were autism spectrum disorder (N = 6) and attention-deficit/hyperactivity disorder (N = 4). Among these studies, grandparental smoking and the use of diethylstilbestrol were more consistently reported to be associated with neurodevelopmental disorders, while the findings for grandparental age vary across the maternal or paternal line. Grandmaternal weight, adverse delivery outcomes, and other spatial-temporal markers of physical and social environmental stressors require further scrutiny.

Summary

The current body of literature has suggested that mental and neurodevelopmental disorders may be outcomes of unfavorable exposures originating from the grandparental generation during their pregnancies. To advance the field, we recommend research efforts into setting up multigenerational studies with prospectively collected data that span through at least three generations, incorporating spatial, environmental, and biological markers for exposure assessment, expanding the outcome phenotypes evaluated, and developing a causal analytical framework including mediation analyses specific for multigenerational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahn W, Kim NS, Lebowitz MS. The role of causal knowledge in reasoning about mental disorders. Oxford University Press; 2017.

    Google Scholar 

  2. Rachdaoui N, Sarkar DK. Chapter two - transgenerational epigenetics and brain disorders. In: Pandey SC, editor. International Review of Neurobiology. Academic Press; 2014. p. 51–73.

    Google Scholar 

  3. Reuben A, Manczak EM, Cabrera LY, et al. The interplay of environmental exposures and mental health: setting an agenda. Environ Health Perspect. 130:025001. https://doi.org/10.1289/EHP9889.

  4. Heindel JJ, Skalla LA, Joubert BR, et al. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017;68:34–48. https://doi.org/10.1016/j.reprotox.2016.11.011.

    Article  PubMed  CAS  Google Scholar 

  5. Wesselink AK. Multigenerational effects of environmental exposures. Hum Reprod. 2021;36:539–42. https://doi.org/10.1093/humrep/deaa361.

    Article  PubMed  Google Scholar 

  6. Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psychiatry. 2013;73:313–20. https://doi.org/10.1016/j.biopsych.2012.08.019.

    Article  PubMed  Google Scholar 

  7. Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care. 2011;41:158–76. https://doi.org/10.1016/j.cppeds.2011.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hagemann E, Silva DT, Davis JA, et al. Developmental origins of health and disease (DOHaD): the importance of life-course and transgenerational approaches. Paediatr Respir Rev. 2021;40:3–9. https://doi.org/10.1016/j.prrv.2021.05.005.

    Article  PubMed  Google Scholar 

  9. McCarthy DM, Morgan TJ Jr, Lowe SE, et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. Plos Biol. 2018;16:e2006497. https://doi.org/10.1371/journal.pbio.2006497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Choi CS, Gonzales EL, Kim KC, et al. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy. Sci Rep. 2016;6:36250. https://doi.org/10.1038/srep36250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wolstenholme JT, Edwards M, Shetty SRJ, et al. Gestational exposure to bisphenol A produces transgenerational changes in behaviors and gene expression. Endocrinology. 2012;153:3828–38. https://doi.org/10.1210/en.2012-1195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sobolewski M, Abston K, Conrad K, et al. Lineage- and sex-dependent behavioral and biochemical transgenerational consequences of developmental exposure to lead, prenatal stress, and combined lead and prenatal stress in mice. Environ Health Perspect. 128:027001. https://doi.org/10.1289/EHP4977.

  13. Martini M, Corces VG, Rissman EF. Mini-review: epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: applications to behavioral neuroendocrinology. Horm Behav. 2020;119:104677. https://doi.org/10.1016/j.yhbeh.2020.104677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou Y, Zhang M, Liu W, et al. Transgenerational transmission of neurodevelopmental disorders induced by maternal exposure to PM2.5. Chemosphere. 2020;255:126920. https://doi.org/10.1016/j.chemosphere.2020.126920.

    Article  PubMed  CAS  Google Scholar 

  15. Knecht AL, Truong L, Marvel SW, et al. Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol. 2017;329:148–57. https://doi.org/10.1016/j.taap.2017.05.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fontana BD, Alnassar N, Parker MO Transgenerational effects of early-life stress on anxiety in zebrafish (Danio rerio). Behav Process. 2023;208:104874. https://doi.org/10.1016/j.beproc.2023.104874.

  17. Chen L, Wang X, Zhang X, et al. Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. Environ Pollut. 2017;230:96–106. https://doi.org/10.1016/j.envpol.2017.06.053.

    Article  PubMed  CAS  Google Scholar 

  18. Breton CV, Landon R, Kahn LG, et al. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol. 2021;4:1–15. https://doi.org/10.1038/s42003-021-02316-6.

    Article  Google Scholar 

  19. Transgenerational epigenetic inheritance in mammals: how good is the evidence? https://doi.org/10.1096/fj.201500083.

  20. Golding J, Pembrey M, Iles-Caven Y, et al. Ancestral smoking and developmental outcomes: a review of publications from a population birth cohort†. Biol Reprod. 2021;105:625–31. https://doi.org/10.1093/biolre/ioab124.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang G-Q, Luo Y, Zhang H-H et al. Grandmaternal smoking during pregnancy and grandchild health: a systematic review and meta-analysis. 2022. https://doi.org/10.21203/rs.3.rs-1625650/v1.

  22. Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod. 2021;105:644–66. https://doi.org/10.1093/biolre/ioab138.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mouat JS, LaSalle JM. The promise of DNA methylation in understanding multigenerational factors in autism spectrum disorders. Front Genet. 2022;13:831221. https://doi.org/10.3389/fgene.2022.831221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Walker VR, Boyles AL, Pelch KE, et al. Human and animal evidence of potential transgenerational inheritance of health effects: an evidence map and state-of-the-science evaluation. Environ Int. 2018;115:48–69. https://doi.org/10.1016/j.envint.2017.12.032.

    Article  PubMed  Google Scholar 

  25. Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenet. 2020;12:136. https://doi.org/10.1186/s13148-020-00929-y.

    Article  CAS  Google Scholar 

  26. Ambeskovic M, Roseboom TJ, Metz GAS. Transgenerational effects of early environmental insults on aging and disease incidence. Neurosci Biobehav Rev. 2020;117:297–316. https://doi.org/10.1016/j.neubiorev.2017.08.002.

    Article  PubMed  Google Scholar 

  27. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73. https://doi.org/10.7326/M18-0850.

    Article  PubMed  Google Scholar 

  28. Sampson M, McGowan J, Cogo E, et al. An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol. 2009;62:944–52. https://doi.org/10.1016/j.jclinepi.2008.10.012.

    Article  PubMed  Google Scholar 

  29. Lockwood C, dos Santos KB, Pap R. Practical guidance for knowledge synthesis: scoping review methods. Asian Nurs Res. 2019;13:287–94. https://doi.org/10.1016/j.anr.2019.11.002.

    Article  Google Scholar 

  30. Peters MDJ, Godfrey C, McInerney P, et al. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth. 2022; https://doi.org/10.11124/JBIES-21-00242.

  31. Yim G, Roberts A, Ascherio A, et al. Smoking during pregnancy and risk of attention-deficit/hyperactivity disorder in the third generation. Epidemiology. 2022; https://doi.org/10.1097/EDE.0000000000001467.

  32. Yim G, Roberts A, Ascherio A, et al. Association between periconceptional weight of maternal grandmothers and attention-deficit/hyperactivity disorder in grandchildren. JAMA Net Open. 2021;4:e2118824. https://doi.org/10.1001/jamanetworkopen.2021.18824.

    Article  Google Scholar 

  33. Kioumourtzoglou M-A, Coull BA, O’Reilly ÉJ, et al. Association of exposure to diethylstilbestrol during pregnancy with multigenerational neurodevelopmental deficits. JAMA Pediatr. 2018;172:670–7. https://doi.org/10.1001/jamapediatrics.2018.0727.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fomby P, Krueger PM, Wagner NM. Age at childbearing over two generations and grandchildren’s cognitive achievement. Res Soc Stratif Mobil. 2014;35:71–88. https://doi.org/10.1016/j.rssm.2013.09.003.

    Article  PubMed  Google Scholar 

  35. Richards Steed R, Bakian AV, Smith KR, et al. Evidence of transgenerational effects on autism spectrum disorder using multigenerational space-time cluster detection. Int J Health Geogr. 2022;21:13. https://doi.org/10.1186/s12942-022-00313-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function. Sci Rep. https://www.nature.com/articles/srep13792. Accessed 6 Nov 2022

  37. Transgenerational adverse effects of valproate? A patient report from 90 affected families - Martin - 2022 - Birth Defects Research. Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/bdr2.1967. Accessed 7 Nov 2022

  38. Wong WSW, Solomon BD, Bodian DL, et al. New observations on maternal age effect on germline de novo mutations. Nat Commun. 2016;7:10486. https://doi.org/10.1038/ncomms10486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Golding J, Steer C, Pembrey M. Parental and grandparental ages in the autistic spectrum disorders: a birth cohort study. Plos One. 2010;5:e9939. https://doi.org/10.1371/journal.pone.0009939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gao Y, Yu Y, Xiao J, et al. Association of grandparental and parental age at childbirth with autism spectrum disorder in children. JAMA Netw Open. 2020;3:e202868. https://doi.org/10.1001/jamanetworkopen.2020.2868.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frans EM, Sandin S, Reichenberg A, et al. Autism risk across generations: a population based study of advancing grandpaternal and paternal age. JAMA Psychiatry. 2013;70:516–21. https://doi.org/10.1001/jamapsychiatry.2013.1180.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Golding J, van den Berg G, Northstone K, et al. Grandchild’s IQ is associated with grandparental environments prior to the birth of the parents. Wellcome Open Res. 2021;5:198. https://doi.org/10.12688/wellcomeopenres.16205.2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Frans EM, McGrath JJ, Sandin S, et al. Advanced paternal and grandpaternal age and schizophrenia: a three-generation perspective. Schizophr Res. 2011;133:120–4. https://doi.org/10.1016/j.schres.2011.09.027.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Golding J, Ellis G, Gregory S, et al. Grand-maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci Rep. 2017;7:46179. https://doi.org/10.1038/srep46179.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luo R, Zhang H, Mukherjee N, et al. Association of grandmaternal smoking during pregnancy with DNA methylation of grandchildren: the Isle of Wight study. Epigenomics. 2021;13:1473–83. https://doi.org/10.2217/epi-2020-0433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Watkins SH, Iles-Caven Y, Pembrey M, et al. Grandmaternal smoking during pregnancy is associated with differential DNA methylation in peripheral blood of their grandchildren. Eur J Hum Genet. 2022:1–7. https://doi.org/10.1038/s41431-022-01081-2.

  47. Tweed JO, Hsia SH, Lutfy K, Friedman TC. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol Metab. 2012;23:334–42. https://doi.org/10.1016/j.tem.2012.03.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Joya X, Manzano C, Álvarez A-T, et al. Transgenerational exposure to environmental tobacco smoke. Int J Environ Res Public Health. 2014;11:7261–74. https://doi.org/10.3390/ijerph110707261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gustavson K, Ystrom E, Stoltenberg C, et al. Smoking in pregnancy and child ADHD. Pediatrics. 2017;139:e20162509. https://doi.org/10.1542/peds.2016-2509.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tournaire M, Epelboin S, Devouche E, et al. Adverse health effects in children of women exposed in utero to diethylstilbestrol (DES). Therapie. 2016;71:395–404. https://doi.org/10.1016/j.therap.2016.01.006.

    Article  PubMed  Google Scholar 

  51. Sharp GC, Lawlor DA, Richmond RC, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2015;44:1288–304. https://doi.org/10.1093/ije/dyv042.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xiao J, Gao Y, Yu Y, et al. Associations of parental birth characteristics with autism spectrum disorder (ASD) risk in their offspring: a population-based multigenerational cohort study in Denmark. Int J Epidemiol. 2021;00:11.

    Google Scholar 

  53. Sidorchuk A, Goodman A, Koupil I. Social class, social mobility and alcohol-related disorders in Swedish men and women: a study of four generations. Plos One. 2018;13:e0191855. https://doi.org/10.1371/journal.pone.0191855.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Levine SZ, Levav I, Pugachova I, et al. Transgenerational effects of genocide exposure on the risk and course of schizophrenia: a population-based study. Schizophr Res. 2016;176:540–5. https://doi.org/10.1016/j.schres.2016.06.019.

    Article  PubMed  Google Scholar 

  55. McGee G, Weisskopf MG, Kioumourtzoglou M-A, et al. Informatively empty clusters with application to multigenerational studies. Biostatistics. 2020;21:775–89. https://doi.org/10.1093/biostatistics/kxz005.

    Article  PubMed  Google Scholar 

  56. McGee G, Perkins NJ, Mumford SL, et al. Methodological issues in population-based studies of multigenerational associations. Am J Epidemiol. https://doi.org/10.1093/aje/kwaa125.

  57. Brehm E, Flaws JA. Transgenerational effects of endocrine-disrupting chemicals on male and female reproduction. Endocrinology. 2019;160:1421–35. https://doi.org/10.1210/en.2019-00034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. https://www.science.org/doi/full/10.1126/science.1108190?casa_token=RUmq8uPHPg4AAAAA%3AthVJ0uW7C-BrmLv01mMOw3Rum_2s-gHTH76jHJbnFFRE40eRACZW-N1NDOaCqEWyBF2oXgys2TTpD44. Accessed 11 Feb 2023

  59. Bias from conditioning on live birth in pregnancy cohorts: an illustration based on neurodevelopment in children after prenatal exposure to organic pollutants - PubMed. https://pubmed.ncbi.nlm.nih.gov/25604449/. Accessed 8 Aug 2023

  60. Bias due to selection on live births in studies of environmental exposures during pregnancy: a simulation study. Environ Health Perspect. 129(4) https://ehp.niehs.nih.gov/doi/full/10.1289/EHP7961. Accessed 8 Aug 2023

  61. McGee G, Haneuse S, Coull BA, et al. On the nature of informative presence bias in analyses of electronic health records. Epidemiology. 2022;33:105–13. https://doi.org/10.1097/EDE.0000000000001432.

    Article  PubMed  PubMed Central  Google Scholar 

  62. VanderWeele TJ. Explanation in causal inference: developments in mediation and interaction. Int J Epidemiol. 2016;45:1904–8. https://doi.org/10.1093/ije/dyw277.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42:1511–9. https://doi.org/10.1093/ije/dyt127.

    Article  PubMed  Google Scholar 

  64. Lash TL, Fox MP, MacLehose RF, et al. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43:1969–85. https://doi.org/10.1093/ije/dyu149.

    Article  PubMed  Google Scholar 

  65. Alfonso S, Blanc M, Joassard L, et al. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat Toxicol. 2019;208:29–38. https://doi.org/10.1016/j.aquatox.2018.12.021.

    Article  PubMed  CAS  Google Scholar 

  66. Haimbaugh A, Wu C-C, Akemann C, et al. Multi- and transgenerational effects of developmental exposure to environmental levels of PFAS and PFAS mixture in zebrafish (Danio rerio). Toxics. 2022;10:334. https://doi.org/10.3390/toxics10060334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Genomic Databases and Biobanks in Denmark. J Law Med Ethics. Cambridge Core. https://www.cambridge.org/core/journals/journal-of-law-medicine-and-ethics/article/abs/genomic-databases-and-biobanks-in-denmark/57B1118538E1C4E49AC0CF102A7490E3. Accessed 10 Feb 2023

  68. Bassaganyas L, Freedman G, Vaka D, et al. Whole exome and whole genome sequencing with dried blood spot DNA without whole genome amplification. Hum Mutat. 2018;39:167–71. https://doi.org/10.1002/humu.23356.

    Article  PubMed  CAS  Google Scholar 

  69. Metabolomic profiles predict individual multidisease outcomes. Nat Med. https://www.nature.com/articles/s41591-022-01980-3. Accessed 10 Feb 2023

  70. Glinton KE, Elsea SH. Untargeted metabolomics for autism spectrum disorders: current status and future directions. Front Psychiatry. 2019;10:647. https://doi.org/10.3389/fpsyt.2019.00647.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hamm NC, Hamad AF, Wall-Wieler E, et al. Multigenerational health research using population-based linked databases: an international review. Int J Popul Data Sci. 6:1686. https://doi.org/10.23889/ijpds.v6i1.1686.

  72. Transgenerational studies: how do we investigate multigenerational effects? ProQuest. https://www.proquest.com/openview/5edaa35c5ae083c040bc5ff04cd2303a/1?cbl=105348&parentSessionId=jfy1TBX6Zi1NobhzF9zrSNo0qLui31Gk%2Fgi6SJzvz0w%3D&pq-origsite=gscholar. Accessed 7 Nov 2022

  73. Koleilat M, Whaley SE. Trends and predictors of excessive gestational weight gain among Hispanic WIC participants in Southern California. Matern Child Health J. 2013;17:1399–404. https://doi.org/10.1007/s10995-012-1140-6.

    Article  PubMed  Google Scholar 

  74. Koleilat M, Vargas N, vanTwist V, Kodjebacheva GD. Perceived barriers to and suggested interventions for physical activity during pregnancy among participants of the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) in Southern California. BMC Pregnancy Childbirth. 2021;21:69. https://doi.org/10.1186/s12884-021-03553-7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Grover MM, Jenkins TG. Transgenerational epigenetics: a window into paternal health influences on offspring. Urol Clin. 2020;47:219–25. https://doi.org/10.1016/j.ucl.2019.12.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantive intellectual contributions to the development of this manuscript. JX, KN, and ZL contributed to the study conception and design and conceptualized the review approach. JX, AJ, GB, KN, and ZL contributed to the screening, study selection, data charting, and data extraction. JX and ZL led the manuscript writing.

Corresponding author

Correspondence to Zeyan Liew.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Susceptibility Factors in Environmental Health

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Jain, A., Bellia, G. et al. A scoping review of multigenerational impacts of grandparental exposures on mental health in grandchildren. Curr Envir Health Rpt 10, 369–382 (2023). https://doi.org/10.1007/s40572-023-00413-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-023-00413-8

Keywords

Navigation