Skip to main content
Log in

A FVM implementation and validation of non-local modeling for single- and two-phase granular flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Granular materials involve a number of phenomena which cannot solely be described by standard local models. In recent years, various non-local models have been proposed to address these shortcomings. However, these models are still in their first step and are rarely implemented numerically, which makes them inconvenient for practical applications. In this paper, we propose an Eulerian numerical implementation of the non-local granular fluidity model (NGF) based on a finite volume method and the volume-of-fluid interface capturing method. The proposed implementation is straightforward at the exception of a relaxation loop used for numerical stabilization and offers a suitable framework to steady flow problems involving evolving boundaries or two distinct phases. It is then validated and successfully applied to different reference cases such as single-phase planar and annular shear cells and two-phase inclined plane. Beyond the validation of the model, this work also highlights the limits of the NGF model as well as the practical conditions to obtain optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  2. Da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72:021309

    Article  Google Scholar 

  3. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441:727–730

    Article  Google Scholar 

  4. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc A 225:49–63

    Google Scholar 

  5. Staron L, Lagrée PY, Popinet S (2014) Continuum simulation of the discharge of the granular silo. Eur Phys J E 37:5

    Article  Google Scholar 

  6. Dunatunga S, Kamrin K (2017) Continuum modeling of projectile impact and penetration in dry granular media. J Mech Phys Solids 100:45–60

    Article  MathSciNet  Google Scholar 

  7. Lagrée PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a \(\mu \)(I)-rheology. J Fluid Mech 686:378–408

    Article  MathSciNet  MATH  Google Scholar 

  8. Midi GDR (2004) On dense granular flows. Eur Phys J E 14:341–365

    Article  Google Scholar 

  9. Reddy KA, Forterre Y, Pouliquen O (2011) Evidence of mechanically activated processes in slow granular flows. Phys Rev Lett 106:108301108301

    Article  Google Scholar 

  10. Saitoh K, Tighe BP (2019) Nonlocal effects in inhomogeneous flows of soft athermal disks. Phys Rev Lett 122:188001

    Article  Google Scholar 

  11. De Borst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8:317–332

    Article  Google Scholar 

  12. Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Geotechnique 37:271–283

    Article  Google Scholar 

  13. Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 130:187–202

    Article  MATH  Google Scholar 

  14. Aranson IS, Tsimring LS (2001) Continuum description of avalanches in granular media. Phys Rev E 64:020301

    Article  Google Scholar 

  15. Derec C, Ajdari A, Lequeux F (2001) Rheology and aging: a simple approach. Eur Phys J E 4:355–361

    Article  Google Scholar 

  16. Volfson D, Tsimring LS, Aranson IS (2003) Order parameter description of stationary partially fluidized shear granular flows. Phys Rev Lett 90:254301

    Article  Google Scholar 

  17. Nott PR (2017) A non-local plasticity theory for slow granular flows. EPJ Web Conf 140:11015

    Article  Google Scholar 

  18. Pouliquen O, Forterre Y (2009) A non-local rheology for dense granular flows. Phil Trans R Soc A 367:5091–5107

    Article  MATH  Google Scholar 

  19. Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38:125

    Article  Google Scholar 

  20. Kamrin K (2019) Non-locality in granular flow: phenomenology and modeling approaches. Front Phys 7:116

    Article  Google Scholar 

  21. Chialvo S, Sun J, Sundaresan S (2012) Bridging the rheology of granular flows in three regimes. Phys Rev E 85:021305

    Article  Google Scholar 

  22. Kamrin K, Koval G (2012) Non-local constitutive relation for steady granular flow. Phys Rev Lett 108:178301

    Article  Google Scholar 

  23. Bouzid M, Trulsson M, Claudin P, Clément E, Andreotti B (2013) Nonlocal rheology of granular flows across yield conditions. Phys Rev Lett 111:238301

    Article  Google Scholar 

  24. Tang Z, Brzinski TA, Shearer M, Daniels KE (2018) Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matter 14:3040

    Article  Google Scholar 

  25. Henann DL, Kamrin K (2013) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci USA 110:6730

    Article  MathSciNet  MATH  Google Scholar 

  26. Henann DL, Kamrin K (2014) Continuum modeling of secondary rheology in dense granular materials. Phys Rev Lett 113:178001

    Article  Google Scholar 

  27. Liu D, Henann DL (2017) Non-local continuum modelling of steady, dense granular heap flows. J Fluid Mech 831:212–227

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu D, Henann DL (2018) Size-dependence of the flow threshold in dense granular materials. Soft Matter 14:5294

    Article  Google Scholar 

  29. Bouzid M, Trulsson M, Izzet A, Favier de Coulomb A, Claudin P, Clément E, Andreotti B (2017) Non-local rheology of dense granular flows. EPJ Web Conf 140:11013

    Article  Google Scholar 

  30. Bouzid M, Trulsson M, Claudin P, Clément E, Andreotti B (2015) Microrheology to probe non-local effects in dense granular flows. EPL 109:24002

    Article  Google Scholar 

  31. Gaume J, Chambon G, Naaim M (2020) Microscopic origin of nonlocal rheology in dense granular materials. Phys Rev Lett 125:188001

    Article  Google Scholar 

  32. Robinson JA, Daniel JH (2021) Examination of the microscopic definition for granular fluidity. Phys Rev Fluids 6:044302

    Article  Google Scholar 

  33. Li S, Henann DL (2019) Material stability and instability in non-local continuum models for dense granular materials. J Fluid Mech 871:799–830

    Article  MathSciNet  MATH  Google Scholar 

  34. Henann DL, Kamrin K (2016) A finite element implementation of the nonlocal granular rheology. Int J Numer Methods Eng 108:273–302

    Article  MathSciNet  Google Scholar 

  35. Lin CC, Yang FL (2020) Continuum simulation for regularized non-local \(\mu (I)\) model of dense granular flows. J Comput Phys 420:109708

    Article  MathSciNet  MATH  Google Scholar 

  36. Hirt CH, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  37. Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft glassy materials. Phys Rev Lett 103:036001

    Article  Google Scholar 

  38. Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454:84–87

    Article  Google Scholar 

  39. Zhang Q, Kamrin K (2017) Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys Rev Lett 118:058001

    Article  Google Scholar 

  40. Henann DL, Kamrin K (2014) Continuum thermomechanics of the nonlocal granular rheology. Int J Plast 60:145–162

    Article  Google Scholar 

  41. Jop P, Forterre Y, Pouliquen O (2005) Crucial role of side walls for granular surface flows: consequences for the rheology. J Fluid Mech 541:167–192

    Article  MATH  Google Scholar 

  42. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    Article  MathSciNet  MATH  Google Scholar 

  43. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method, Longman scientific and technical

  44. Rusche H (2002) Computational fluid dynamics of dispersed two-phase flows at high phase fractions, school PhD Thesis, Imperial College of Science, Technology and Medicine, London

  45. Holzmann T (2017) Mathematics, numerics, derivations and openfoam (R), 4th ed. Holzmann-cfd

  46. Weller HG (2008) A new approach to vof-based interface capturing methods for incompressible and compressible flows, Technical Report TR/HGW/04, OpenCFD Ltd. (unpublished)

  47. Damián SM (2013) An extended mixture model for the simultaneous treatment of short and long scale interfaces, school PhD Thesis, Universidad Nacional Del Litoral, Facultad de Ingeniería y Ciencias Hídricas, Santa Fe

  48. Zalesak TS (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31:335–362

    Article  MathSciNet  MATH  Google Scholar 

  49. Washino K, Chan EL, Matsumoto T, Hashino S, Tsuji T, Tanaka T (2017) Normal viscous force of pendular liquid bridge between two relatively moving particles. J Colloid Interface Sci 494:255–265

    Article  Google Scholar 

  50. Anon (2011) OPENFOAM the foundation. http://www.openfoam.org/version2.0.0/steady-vof.php. Accessed on 18 March 2021

  51. Arnone A, Liou MS, Povinelli LA (1993) Multigrid time-accurate integration of Navier–Stokes equations. AIAA Paper 93:3361

    Google Scholar 

  52. Siavoshi S, Orpe AV, Kudrolli A (2006) Friction of a slider on a granular layer: nonmonotonic thickness dependence and effect of boundary conditions. Phys Rev E 73:010301

    Article  Google Scholar 

  53. Losert W, Bocquet L, Lubensky TC, Gollub JP (2000) Particle dynamics in sheared granular matter. Phys Rev Lett 85:1428–1431

    Article  Google Scholar 

  54. Faroux D, Washino K, Tsuji T, Tanaka T (2021) Coupling non-local rheology and volume of fluid (VOF) method: a finite volume method (FVM) implementation EPJ Web. Conf 249:03025

    Google Scholar 

  55. Artoni R, Richard P (2015) Average balance equations, scale dependence, and energy cascade for granular materials. Phys Rev E 91:032202

    Article  MathSciNet  Google Scholar 

  56. Babic M (1997) Average balance equations for granular materials. Int J Eng Sci 35:523–548

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang Z, Zhang J (2015) Fluctuations of particle motion in granular avalanches–from the microscopic to the macroscopic scales. Soft Matter 11:5408

    Article  Google Scholar 

  58. Kamrin K, Henann DL (2015) Nonlocal modeling of granular flows down inclines. Soft Matter 11:179

    Article  Google Scholar 

  59. Silbert LE, Landry JW, Grest GS (2003) Granular flow down a rough inclined plane: transition between thin and thick piles. Phys Fluids 15:1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Tsuji.

Ethics declarations

Conflicts of interests

The authors report no conflict of interest.

Code availability

Custom solver developed in OpenFOAM-6 software.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faroux, D., Washino, K., Tsuji, T. et al. A FVM implementation and validation of non-local modeling for single- and two-phase granular flows. Comp. Part. Mech. 9, 1249–1263 (2022). https://doi.org/10.1007/s40571-021-00455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00455-5

Keywords

Navigation