Skip to main content

Advertisement

Log in

Autophagy and its role in pulmonary hypertension

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is a very common kind of pulmonary vascular disease, which can cause a heavier burden on patient’s quality of life, even lead to death. Yet, the mechanism of PH is incomprehensive and not so clear nowadays. In recent years, more and more studies show that autophagy plays a pivotal role in the development of PH. Some modalities target on the formation or maturation of autophagosome that has emerged from our increasing knowledge of autophagy machinery, which may prevent or eliminate the process of PH. The deciphering of molecular selectivity of autophagy has also been a source of novel modulators that act specifically on selective forms of autophagy. Tremendous recent progress has opened a new possibility for modulating autophagy in complex diseases. Thus, autophagy may become a prospective choice for treatment of PH. Herein, we reviewed the literatures and discussed the role of autophagy in the development and treatment of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMPK:

Adenosine monophosphate–activated protein kinase

BMPR-II:

Bone morphogenetic protein receptor type II

CaMKK-β:

Calmodulin-dependent protein kinase kinase-β

CFZ:

Carfilzomib

CMA:

Chaperone-mediated autophagy

CTEPH:

Chronic thromboembolic PH

DAPK:

Death-associated protein kinase

E2:

17β-estradiol

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinases

FAS:

Fatty acid synthase

LC3:

Light chain 3

LV:

Left ventricular

MAPK:

Mitogen-activated protein kinases

mTOR:

Mammalian target of rapamycin

PAH:

Pulmonary arterial hypertension

PASMCs:

Pulmonary artery smooth muscle cells

PH:

Pulmonary hypertension

PHC:

Pulmonary hypertension connections

PI3K:

Phosphatidylinositol 3-kinase

REVEAL:

Registry to evaluate early and long-term pulmonary arterial hypertension disease management

RV:

Right ventricular

Ucp2:

Uncoupling protein 2

ULK1:

Unc-51 like kinase 1, UPS:Ubiquitin–proteasome system

References

  1. Galiè N, Humbert M, Vachiery JL et al (2015) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the european society of cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 46:903–975

    Article  CAS  PubMed  Google Scholar 

  2. François CJ, Schiebler ML (2016) Imaging of pulmonary hypertension. Radiol Clin North Am 54:1133–1149

    Article  PubMed  Google Scholar 

  3. Hoeper MM, Humbert M, Souza R et al (2016) A global view of pulmonary hypertension. Lancet Respir Med 4:306–322

    Article  PubMed  Google Scholar 

  4. Thenappan T, Ryan JJ, Archer SL (2012) Evolving epidemiology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186:707–709

    Article  PubMed  PubMed Central  Google Scholar 

  5. George MG, Schieb LJ, Ayala C et al (2014) Pulmonary hypertension surveillance: United States, 2001 to 2010. Chest 146:476–495

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4:740–743

    Article  PubMed  Google Scholar 

  7. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  CAS  PubMed  Google Scholar 

  8. Wu DJ, Adamopoulos IE (2017) Autophagy and autoimmunity. Clin Immunol 176:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tai S, Hu XQ, Peng DQ et al (2016) The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 211:1–6

    Article  PubMed  Google Scholar 

  10. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    Article  CAS  PubMed  Google Scholar 

  11. Kenney DL, Benarroch EE (2015) The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology 85:634–645

    Article  PubMed  Google Scholar 

  12. Morel E, Mehrpour M, Botti J et al (2017) A Druggable Process. Annu Rev Pharmacol Toxicol 57:375–398

    Article  CAS  PubMed  Google Scholar 

  13. Martinet W, Agostinis P, Vanhoecke B et al (2009) Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond) 116:697–712

    Article  CAS  Google Scholar 

  14. Haspel JA, Choi AM (2011) Autophagy: a core cellular process with emerging links to pulmonary disease. Am J Respir Crit Care Med 184:1237–1246

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farré JC, Subramani S (2016) Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17:537–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122

    Article  CAS  PubMed  Google Scholar 

  17. Klionsky DJ, Cregg JM, Dunn WA Jr et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  18. Hosokawa N, Sasaki T, Iemura S et al (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979

    Article  CAS  PubMed  Google Scholar 

  19. Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455

    Article  CAS  PubMed  Google Scholar 

  20. Dupont N, Nascimbeni AC, Morel E et al (2017) Molecular mechanisms of noncanonical autophagy. Int Rev Cell Mol Biol 328:1–23

    Article  CAS  PubMed  Google Scholar 

  21. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ryter SW, Choi AM (2015) Autophagy in lung disease pathogenesis and therapeutics. Redox Biol 4:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen N, Shteyn V, Melia TJ (2017) Sensing membrane curvature in macroautophagy. J Mol Biol 429:457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  25. Pattingre S, Espert L, Biard-Piechaczyk M et al (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal S, Mannam P, Zhang J (2016) Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 311:L433–L452

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540

    Article  CAS  PubMed  Google Scholar 

  28. Dromparis P, Michelakis ED (2013) Mitochondria in vascular health and disease. Annu Rev Physiol 75:95–126

    Article  CAS  PubMed  Google Scholar 

  29. Marsboom G, Toth PT, Ryan JJ et al (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110:1484–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng C, Wu D, Yang M et al (2016) The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension. Respir Res 17:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teng RJ, Du J, Welak S et al (2012) Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302:L651–L663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonioli M, Di Rienzo M, Piacentini M et al (2017) Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci 42:28–41

    Article  CAS  PubMed  Google Scholar 

  33. Mizumura K, Cloonan S, Choi ME et al (2016) Autophagy: friend or foe in lung disease? Ann Am Thorac Soc 13:S40–S47

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morales-Cano D, Menendez C, Moreno E et al (2014) The flavonoid quercetin reverses pulmonary hypertension in rats. PLoS One 9:e114492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Y, Cao X, Guo P et al (2016) Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 103:165–176

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Shoji-Kawata S, Sumpter RM Jr et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110:20364–20371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376

    Article  CAS  PubMed  Google Scholar 

  38. Long L, Yang X, Southwood M et al (2013) Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 112:1159–1170

    Article  CAS  PubMed  Google Scholar 

  39. Randhawa PK, Jaggi AS (2016) TRPV1 channels in cardiovascular system: a double edged sword? Int J Cardiol 228:103–113

    Article  PubMed  Google Scholar 

  40. Meiners S, Ballweg K (2014) Proteostasis in pediatric pulmonary pathology. Mol Cell Pediatr 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li L, Wang X, Wang L et al (2015) Mammalian target of rapamycin overexpression antagonizes chronic hypoxia-triggered pulmonary arterial hypertension via the autophagic pathway. Int J Mol Med 36:316–322

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Gong Y, Wang Z et al (2014) Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J Cell Mol Med 18:542–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng Y, Ren X, Hait WN et al (2013) Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 65:1162–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  45. Nakahira K, Choi AM (2013) Autophagy: a potential therapeutic target in lung diseases. Am J Physiol Lung Cell Mol Physiol 305:L93–L107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lippai M, Szatmári Z (2017) Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol 33:145–168

    Article  CAS  PubMed  Google Scholar 

  47. Mizumura K, Choi AM, Ryter SW (2014) Emerging role of selective autophagy in human diseases. Front Pharmacol 5:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fraidenburg DR, Yuan JX (2013) Hungry for more: autophagy in the pathogenesis of pulmonary arterial hypertension. Circ Res 112:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang W, Liu J, Ma A et al (2014) mTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3. J Cell Physiol 229:2117–2125

    Article  CAS  PubMed  Google Scholar 

  50. Singh N, Manhas A, Kaur G et al (2016) Inhibition of fatty acid synthase is protective in pulmonary hypertension. Br J Pharmacol 173:2030–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lahm T, Frump AL, Albrecht ME et al (2016) 17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 311:L375–L388

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haslip M, Dostanic I, Huang Y et al (2015) Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol 35:1166–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Ibrahim YF, Das D et al (2016) Carfilzomib reverses pulmonary arterial hypertension. Cardiovasc Res 110:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dalvi P, Sharma H, Chinnappan M et al (2016) Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: role in HIV-related pulmonary arterial hypertension. Autophagy 12:2420–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang L, Cui L, Zhou G et al (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24:903–911

    Article  CAS  PubMed  Google Scholar 

  56. Mao M, Yu X, Ge X et al (2017) Acetylated cyclophilin A is a major mediator in hypoxia-induced autophagy and pulmonary vascular angiogenesis. J Hypertens 35:798–809

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-bin Chen.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interests.

Statement of human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yb. Autophagy and its role in pulmonary hypertension. Aging Clin Exp Res 31, 1027–1033 (2019). https://doi.org/10.1007/s40520-018-1063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-1063-1

Keywords

Navigation