Skip to main content
Log in

The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Age-associated decline in skeletal muscle mass and strength is associated with oxidative stress and Ca2+ homeostasis disturbance. Exercise should be considered a viable modality to combat aging of skeletal muscle. This study aimed to investigate whether continuous and fractionated training could be useful tools to attenuate oxidative damage and retain calcium-handling proteins. We conducted the study using 24-month-old male Wistar rats, divided into control, continuous, and fractionated groups. Animals ran at 13 m min−1 for five consecutive days (except weekends) for 6 weeks, for a total period of 42 days. Each session comprised 45 min of exercise, either continuous or divided into three daily sessions of 15 min each. Metabolic and oxidative stress markers, protein levels of mitochondrial transcription factors, and calcium-handling proteins were analyzed. Continuous exercise resulted in reduced ROS production as well as showed a decrease in TBARS levels and carbonyl content. On the other hand, fractionated training increased the antioxidant enzyme activities. The ryanodine receptor and phospholamban protein were regulated by continuous training while sodium calcium exchange protein was increased by the fractionated training. These data suggest that intracellular Ca2+ can be modulated by various training stimuli. In addition, the modulation of oxidative stress by continuous and fractionated training may play an important regulatory role in the muscular contraction mechanism of aged rats, due to changes in calcium metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitchell WK, Williams J, Atherton P et al (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:1–18

    Article  Google Scholar 

  2. Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5:129–142

    Article  CAS  PubMed  Google Scholar 

  3. Speck AE, Fraga D, Soares P et al (2011) Cigarette smoke inhibits brain mitochondrial adaptations of exercised mice. Neurochem Res 36:1056–1061

    Article  CAS  PubMed  Google Scholar 

  4. Szczesny B, Tann AW, Mitra S (2010) Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 131:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson MJ (2011) Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal 15:2477–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capel F, Demaison L, Maskouri F et al (2005) Calcium overload increases oxidative stress in old rat gastrocnemius muscle. J Physiol Pharmacol 56:369–380

    CAS  PubMed  Google Scholar 

  7. Carmeli E, Coleman R, Reznick AZ (2002) The biochemistry of aging muscle. Exp Gerontol 37:477–489

    Article  CAS  PubMed  Google Scholar 

  8. Dargelos E, Brulé C, Combaret L et al (2007) Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Exp Gerontol 42:1088–1098

    Article  CAS  PubMed  Google Scholar 

  9. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  10. Anderson EJ, Neufer PD (2006) Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Am J Physiol Cell Physiol 290:C844–C851

    Article  CAS  PubMed  Google Scholar 

  11. Matsunaga S, Inashima S, Yamada T et al (2003) Oxidation of sarcoplasmic reticulum Ca(2+)-ATPase induced by high-intensity exercise. Pflugers Arch 446:394–399

    Article  CAS  PubMed  Google Scholar 

  12. Short KR, Bigelow ML, Kahl J et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orr R, Raymond J, Fiatarone Singh M (2008) Efficacy of progressive resistance training on balance performance in older adults: a systematic review of randomized controlled trials. Sports Med 38:317–343

    Article  PubMed  Google Scholar 

  14. Harber MP, Konopka AR, Douglass MD et al (2009) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297:R1452–R1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menshikova EV, Ritov VB, Fairfull L et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540

    Article  PubMed  PubMed Central  Google Scholar 

  16. Misic MM, Rosengren KS, Woods JA et al (2007) Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults. Gerontology 53:260–266

    Article  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Krisman CR (1962) A method for the colorimetric estimation of glycogen with iodine. Anal Biochem 4:17–23

    Article  CAS  PubMed  Google Scholar 

  19. Poderoso JJ, Carreras MC, Lisdero C et al (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  CAS  PubMed  Google Scholar 

  20. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  21. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  23. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  24. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  25. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Ferreira JCB, Bacurau AV, Bueno CR et al (2010) Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice. Exp Biol Med (Maywood) 235:497–505

    Article  CAS  Google Scholar 

  29. Pinho RA, Silva LD, Pinho CA et al (2012) Alterations in muscular oxidative metabolism parameters in incremental treadmill exercise test in untrained rats. Eur J Appl Physiol 112:387–396

    Article  CAS  PubMed  Google Scholar 

  30. Gejl KD, Hvid LG, Frandsen U et al (2014) Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 46:496–505

    Article  CAS  PubMed  Google Scholar 

  31. Muller FL, Lustgarten MS, Jang Y et al (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  CAS  PubMed  Google Scholar 

  32. Pinho Ra, Andrades ME, Oliveira MR et al (2006) Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biol Int 30:848–853

    Article  CAS  PubMed  Google Scholar 

  33. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chevion S, Moran DS, Heled Y et al (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci USA 100:5119–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shing CM, Peake JM, Ahern SM et al (2007) The effect of consecutive days of exercise on markers of oxidative stress. Appl Physiol Nutr Metab 32:677–685

    Article  CAS  PubMed  Google Scholar 

  36. Simar D, Malatesta D, Mas E et al (2012) Effect of an 8-weeks aerobic training program in elderly on oxidative stress and HSP72 expression in leukocytes during antioxidant supplementation. J Nutr Health Aging 16:155–161

    Article  CAS  PubMed  Google Scholar 

  37. Fabisiak JP, Ritov VB, Kagan VE (2000) Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical. Antioxid Redox Signal 2:73–82

    Article  CAS  PubMed  Google Scholar 

  38. Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hertelendi Z, Tóth A, Borbély A et al (2008) Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid Redox Signal 10:1175–1184

    Article  CAS  PubMed  Google Scholar 

  40. Tomobe K, Shinozuka T, Kuroiwa M et al (2012) Age-related changes of Nrf2 and phosphorylated GSK-3β in a mouse model of accelerated aging (SAMP8). Arch Gerontol Geriatr 54:e1–e7

    Article  CAS  PubMed  Google Scholar 

  41. Ungvari Z, Bailey-Downs L, Sosnowska D et al (2011) Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol 301:H363–H372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suwa M, Nakano H, Radak Z (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism 57:986–998

    Article  CAS  PubMed  Google Scholar 

  43. Gounder SS, Kannan S, Devadoss D et al (2012) Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7:e45697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    CAS  PubMed  Google Scholar 

  45. Vassilakopoulos T, Karatza M-H, Katsaounou P et al (2003) Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol 94:1025–1032

    Article  CAS  PubMed  Google Scholar 

  46. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  47. Mace LC, Palmer BM, Brown DA et al (2003) Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol 95:1994–2003

    Article  CAS  PubMed  Google Scholar 

  48. Anttila K, Järvilehto M, Mänttäri S (2008) The swimming performance of brown trout and whitefish: the effects of exercise on Ca2+ handling and oxidative capacity of swimming muscles. J Comp Physiol B 178:465–475

    Article  CAS  PubMed  Google Scholar 

  49. James RS, Walter I, Seebacher F (2011) Variation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat (Rattus norvegicus) skeletal muscle. J Exp Biol 214:3542–3548

    Article  CAS  PubMed  Google Scholar 

  50. Sayadi M, Feig M (2013) Role of conformational sampling of Ser16 and Thr17-phosphorylated phospholamban in interactions with SERCA. Biochim Biophys Acta 1828:577–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Fundo de Apoio a Manutenção e Desenvolvimento da Educação Superior (FUMDES), Universidade do Extremo Sul Catarinense (UNESC/Brazil), FAPESC/SC/Brazil, CAPES/MEC/Brazil and CNPq/MCTI/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Pinho.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The study was performed in compliance with the ethical standards of Universidade do Extremo Sul Catarinense.

Statement of human and animal rights

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tromm, C.B., Pozzi, B.G., Paganini, C.S. et al. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats. Aging Clin Exp Res 28, 833–841 (2016). https://doi.org/10.1007/s40520-015-0501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0501-6

Keywords

Navigation