Skip to main content
Log in

Interpretation of Schrödinger equation based on classical mechanics and spin

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

“My own conclusion is that today there is no interpretation of quantum mechanics that does not have serious flaws. This view is not universally shared. Indeed, many physicists are satisfied with their own interpretation of quantum mechanics. But different physicists are satisfied with different interpretations. In my view, we ought to take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics is only a good approximation.”

Steven Weinberg.

Abstract

Schrödinger equation is a corner stone of quantum mechanics, but its simple derivation and it means its understanding is still missing. It is accepted that Schrödinger equation is based both on wave mechanics and quantum mechanics, but it does not have information about spin. Here, based on classical mechanical action and spin precession, we present elementary derivation of an analog of time-dependent Schrödinger equation in the presence of field without particle–wave duality principle. We also derive an analog of relativistic Klein–Gordon–Fock equation. The results are useful for interpretation of quantum mechanics, Pauli exclusion principle, for magnetic field-sensitive reactions, spin-related ESR spectroscopy, and ENDOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kocherginsky, N.M., Gruebele, M.: Mechanical approach to chemical transport. Proc. Natl. Acad. Sci. USA 113(40), 11116–11121 (2016)

    Article  Google Scholar 

  2. Schrödinger, E.: Quantization as an Eigenvalue Problem, four communications. In: Ludwig, G. (ed.) Wave Mechanics, pp. 94–157. Pergamon Press, Oxford (1968)

    Chapter  Google Scholar 

  3. Dirac, P.: Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1982)

    Google Scholar 

  4. Fényes, I.: Eine wahrscheinlichkeitstheoretische Begriindung und Interpretation der Quantenmechanik. Z. Phys. 132, 81–106 (1952)

    Article  MATH  Google Scholar 

  5. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  Google Scholar 

  6. Nagasawa, M.: Schrödinger Equation and Diffusion Theory. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  7. Percival, I.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Okino, T.: Correlation between diffusion equation and Schrödinger equation. J. Mod. Phys. 4, 612–615 (2013)

    Article  Google Scholar 

  9. Tsekov, R.: Brownian motion and quantum mechanics. Fluct. Noise Lett 19, 2050017 (2020). (arXiv:1902.05930)

    Article  Google Scholar 

  10. Caldeira, A.O.: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  11. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw Hill, New York (1968)

    Google Scholar 

  12. Davies, P.C.W.: The Accidental Universe. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  13. Heifetz, E., Tsekov, R., Cohen, E., Nussinov, Z.: On entropy production in the Madelung fluid and the role of Bohm’s potential in classical diffusion. Found. Phys. 46, 815–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yahalom, A.: The fluid dynamics of spin. Mol. Phys. 116(19–20), 2698–2708 (2018)

    Article  Google Scholar 

  15. Byron Jr., F.W., Fuller, R.W.: Mathematics of Classical and Quantum Physics. Dover Publications Inc., New York (1992)

    MATH  Google Scholar 

  16. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. Emended by Styer D. F. ed. Dover Publications, Inc., New York (2005)

    Google Scholar 

  17. Landau, L., Lifshitz, E.: Quantum Mechanics. Course of Theoretical Physics, vol. 3, 3rd edn. Butterworth Heinemann, Oxford (1997)

  18. De Gosson, M., Hiley, B.: Inprints of the quantum world in classical mechanics. Found. Phys. 41(9), 1415–1436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265–2279 (1931)

    Article  MATH  Google Scholar 

  20. Baylis, W.E., Huschilt, J., Wei, J.: Why i ? Am. J. Phys. 60(9), 788–797 (1992)

    Article  Google Scholar 

  21. Levitt, M.: Spin Dynamics: Basics of Nuclear Magnetic Resonanse. Wiley, Chichester (2001)

    Google Scholar 

  22. Weinberg, S.: The Quantum Theory of Fields, 12th edn. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  23. Thomas, L.: The motion of spinning electron. Nature 117(2945), 514 (1926)

    Article  Google Scholar 

  24. Weinberg, S.: Lectures on Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  25. Lianga, C., et al.: An undergraduate experiment of wave motion using a coupled-pendulum chain. Am. J. Phys. 83(5), 389–390 (2015)

    Article  Google Scholar 

  26. Muralidhar, K.: Theory of stochastic Schrodinger equation in complex vector space. Found. Phys. 47, 532–552 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bohm, D.: Quantum Theory. Dover Publications Inc, New York (1989)

    MATH  Google Scholar 

  28. Pauling, L., Wilson Jr., E.B.: Introduction to Quantum Mechanics, 3rd edn. Dover Publications Inc., New York (1985)

    Google Scholar 

  29. Gryzinski, M.: Spin-dynamic theory of the wave-corpuscular duality. Int. J. Theor. Phys. 26(10), 967–981 (1987)

    Article  Google Scholar 

  30. Gardas, B.: Exact solution of the Schrodinger equation with the spin-boson Hamiltonian. J. Phys. A Math. Theor. 44(195301), 7 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Esposito, S.: On the role of spin in quantum mechanics. Found. Phys. Lett. 12, 165–177 (1999)

    Article  MathSciNet  Google Scholar 

  32. Philippidis, C., Dewdney, C., Hiley, B.: Quantum interference and the quantum potential. Nuovo Cimento B 52(1), 15–28 (1979)

    Article  MathSciNet  Google Scholar 

  33. Dennis, G., de Gosson, M., Hiley, B.: Bohm’s quantum potential as an internal energy. Phys. Lett. A 379(18–19), 1224–1227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grossmann, F., Buchholz, M., Pollak, E., Nest, M.: Spin effects and the Pauli principle in semiclassical electron dynamics. Phys. Rev. A 89(032104), 5 (2014)

    Google Scholar 

  35. Buchachenko, A.L., Lawler, R.G.: New possibilities for magnetic control of chemical and biochemical reactions. Acc. Chem. Res. 50(4), 877–884 (2017)

    Article  Google Scholar 

  36. Buchachenko, A.L.: Stable Radicals. Consultants Bureau, New York (1965)

    Google Scholar 

  37. Berliner, L.J.: Spin Labeling: The Next Millennium (Biological Magnetic Resonance). Plenum Press, New York (1998)

    Google Scholar 

  38. Kocherginsky, N., Swartz, H.M.: Nitroxide Spin Labels. CRC Press, Boca Raton (1995)

    Google Scholar 

  39. Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, New York (2001)

    Google Scholar 

  40. Ohanian, H.C.: What is spin? Am. J. Phys. 54(6), 500–505 (1986)

    Article  Google Scholar 

  41. Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47(5), 399–415 (1979)

    Article  MathSciNet  Google Scholar 

  42. Danner, A., et al.: Spin-rotation coupling observed in neutron interferometry. NPJ Quantum Inf. 6(23), 1–6 (2020)

    Google Scholar 

Download references

Acknowledgements

The author declares no conflict of interest and wishes to thank professor M. Gruebele for interest and the School of Chemical Sciences at the University of Illinois for financial support, while this work was carried out.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable, one author , who has written and submitted the manuscript.

Corresponding author

Correspondence to Nikolai M. Kocherginsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocherginsky, N.M. Interpretation of Schrödinger equation based on classical mechanics and spin. Quantum Stud.: Math. Found. 8, 217–227 (2021). https://doi.org/10.1007/s40509-020-00240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-020-00240-8

Keywords

Navigation