Skip to main content

Advertisement

Log in

“Mirador” on the potential role of miRNAs in synergy of light and heat networks

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Light and temperature are two major environmental factors influencing plant growth and development. High temperature caused by increasing global warming and greenhouse gases has become a worldwide concern. In plants, it triggers various morphological, biochemical and physiological changes that adversely influence growth and development leading to substantial decrease in crop yield. The declining food production and the requirements of the rapidly growing population pose further threat to global food security. Plants have elaborate genetic and epigenetic regulatory mechanisms to endure through the unfavorable abiotic conditions. The induction of heat stress response at the genetic level involves de-regulation of transcription factors and chaperones which play an indispensable role in acclimation to heat. The epigenetic regulation includes induction or repression of specific microRNAs (miRs) that target a variety of transcripts. This is a signature response by plants that is observed in almost all stresses such as high light intensities, drought and salinity. Since earlier reports have indicated a strong relationship between light and temperature signaling pathways in plants, so their integration in influencing the miR based regulatory networks needs to be elucidated. Here we present the mirador (window designed to command an extensive outlook) on the potential role of miRs in regulating plant growth and development in synergistic response to light and heat networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achard, P., Herr, A., Baulcombe, D. C., & Harberd, N. P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131, 3357–3365.

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye, C., Miller, W., & Axtell, M. J. (2008). CleaveLand: A pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25, 130–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Álvarez-Venegas, R., & De-la-Peña, C. (2016). Recent advances of epigenetics in crop biotechnology. Frontiers in Plant Science, 7, 413

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi, M. H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University-Science, 23, 139–150.

    Article  Google Scholar 

  • Amin, J., Ananthan, J., & Voellmy, R. (1988). Key features of heat shock regulatory elements. Molecular and Cellular Biology, 8, 3761–3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assimon, V. A., Southworth, D. R., & Gestwicki, J. E. (2015). Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry, 54, 7120–7131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barciszewska-Pacak, M., Milanowska, K., Knop, K., Bielewicz, D., Nuc, P., Plewka, P., et al. (2015). Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in Plant Science, 6, 410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. (2008). MicroRNA metabolism in plants. Rna Interference, 320, 117–136.

    Article  CAS  Google Scholar 

  • Chen, S., & Li, H. (2017). Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels, revealed by RNA-seq in Brachypodium distachyon. Frontiers in Plant Science, 7, 2067.

    PubMed  PubMed Central  Google Scholar 

  • Choi, H.-I., Hong, J.-H., Ha, J.-O., Kang, J.-Y., & Kim, S. Y. (2000). ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry, 275, 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  • Chung, P. J., Park, B., Wang, H., Liu, J., Jang, I.-C., & Chua, N.-H. (2016). Light-inducible miR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis. Plant Physiology, 170, 1772–1782.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., Heater, S., et al. (2011a). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 12, R126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., Heater, S., et al. (2011b). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 12, 1.

    Article  CAS  Google Scholar 

  • Dai, X., & Zhao, P. X. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39, W155–W159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38, W64–W70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaeva, M., & Adamska, I. (2001). Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display. The FEBS Journal, 268, 5521–5529.

    CAS  Google Scholar 

  • Ebhardt, H. A., Tsang, H. H., Dai, D. C., Liu, Y., Bostan, B., & Fahlman, R. P. (2009). Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Research, 37, 2461–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldem, V., Okay, S., & ÜNVER, T. (2013). Plant microRNAs: New players in functional genomics. Turkish Journal of Agriculture and Forestry, 37, 1–21.

    CAS  Google Scholar 

  • Elhiti, M., & Stasolla, C. (2009). Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signaling and Behavior, 4, 86–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-kereamy, A., Bi, Y.-M., Ranathunge, K., Beatty, P. H., Good, A. G., & Rothstein, S. J. (2012). The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE, 7, e52030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensminger, I., Busch, F., & Huner, N. (2006). Photostasis and cold acclimation: Sensing low temperature through photosynthesis. Physiologia Plantarum, 126, 28–44.

    Article  CAS  Google Scholar 

  • Feurtado, J. A., Huang, D., Wicki-Stordeur, L., Hemstock, L. E., Potentier, M. S., Tsang, E. W., et al. (2011). The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. The Plant Cell, 23, 1772–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, S. G., Cook, D., & Thomashow, M. F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiology, 137, 961–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis, A., Dhaka, N., Bakshi, M., Jung, K.-H., Sharma, M. K., & Sharma, R. (2016). Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Scientific Reports, 6, 38488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin, K. A., & Quail, P. H. (2009). Phytochrome functions in Arabidopsis development. Journal of Experimental Botany, 61, 11–24.

    Article  PubMed Central  CAS  Google Scholar 

  • Franklin, K. A., Toledo-Ortiz, G., Pyott, D. E., & Halliday, K. J. (2014). Interaction of light and temperature signalling. Journal of Experimental Botany, 65, 2859–2871.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, K., Tripathi, A., & Sanan-Mishra, N. (2017). Comparative miRomics of salt-tolerant and salt-sensitive rice. Journal of Integrative Bioinformatics, 14, 1.

    Article  Google Scholar 

  • Guan, Q., Lu, X., Zeng, H., Zhang, Y., & Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant Journal, 74, 840–851.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., et al. (2008). Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics, 35, 105–118.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, K. J., & Whitelam, G. C. (2003). Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiology, 131, 1913–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., & Weisshaar, B. (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 57, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashikawa, N., Mizukami, Y., Imazu, H., & Sakurai, H. (2006). Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. Journal of Biological Chemistry, 281, 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  • Havaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213, 953–966.

    Article  CAS  Google Scholar 

  • Heggie, L., & Halliday, K. J. (2004). The highs and lows of plant life: Temperature and light interactions in development. International Journal of Developmental Biology, 49, 675–687.

    Article  CAS  Google Scholar 

  • Henriksson, E., Olsson, A. S., Johannesson, H., Johansson, H., Hanson, J., Engström, P., et al. (2005). Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiology, 139, 509–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heschel, M. S., Selby, J., Butler, C., Whitelam, G. C., Sharrock, R. A., & Donohue, K. (2007). A new role for phytochromes in temperature-dependent germination. New Phytologist, 174, 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Hivrale, V., Zheng, Y., Puli, C. O. R., Jagadeeswaran, G., Gowdu, K., Kakani, V. G., et al. (2016). Characterization of drought-and heat-responsive microRNAs in switchgrass. Plant Science, 242, 214–223.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, M., Raja, N., Yasmeen, F., Hussain, M., Ejaz, M., & Shah, M. (2017). Impacts of heat stress on wheat: A critical review. Advances in Crop Science and Technology, 5, 1–9.

    Article  Google Scholar 

  • Izadi, F., Zarrini, H. N., Kiani, G., & Jelodar, N. B. (2017). Data mining approaches highlighted transcription factors that play role in thermo-priming. Plant Omics, 10, 139.

    Article  Google Scholar 

  • Jacob, P., Hirt, H., & Bendahmane, A. (2016). The heat shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15, 405–414.

    Article  CAS  Google Scholar 

  • Jagadish, S., Craufurd, P., & Wheeler, T. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 58, 1627–1635.

    Article  CAS  PubMed  Google Scholar 

  • Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., et al. (2007). F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 143, 1467–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Chen, R., Dong, J., Xu, Z., & Gao, X. (2012). Analysis of GDSL lipase (GLIP) family genes in rice (Oryza sativa). Plant Omics, 5, 351.

    CAS  Google Scholar 

  • Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 57, 19–53.

    Article  CAS  PubMed  Google Scholar 

  • Kaushik, A., Saraf, S., Mukherjee, S. K., & Gupta, D. (2015). miRMOD: A tool for identification and analysis of 5′ and 3′ miRNA modifications in Next Generation Sequencing small RNA data. PeerJ, 3, e1332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaksefidi, R. E., Mirlohi, S., Khalaji, F., Fakhari, Z., Shiran, B., Fallahi, H., et al. (2015). Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Frontiers in Plant Science, 6, 741–754.

    Google Scholar 

  • Kong, S.-G., & Okajima, K. (2016). Diverse photoreceptors and light responses in plants. Journal of Plant Research, 129, 111–114.

    Article  PubMed  Google Scholar 

  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Wu, L. Q., Zheng, W. Y., Wang, R. F., & Yang, L. X. (2015). Genome-wide identification of microRNAs responsive to high temperature in rice (Oryza sativa) by high-throughput deep sequencing. Journal of Agronomy and Crop Science, 201, 379–388.

    Article  CAS  Google Scholar 

  • Lin, Y.-X., Jiang, H.-Y., Chu, Z.-X., Tang, X.-L., Zhu, S.-W., & Cheng, B.-J. (2011). Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 12, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 6, 267.

    PubMed  PubMed Central  Google Scholar 

  • López-Juez, E., Dillon, E., Magyar, Z., Khan, S., Hazeldine, S., de Jager, S. M., et al. (2008). Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. The Plant Cell, 20, 947–968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenzo, C. D., Sanchez-Lamas, M., Antonietti, M. S., & Cerdán, P. D. (2016). Emerging hubs in plant light and temperature signaling. Photochemistry and Photobiology, 92, 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, N. J., & Walhout, A. J. (2009). The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays, 31, 435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, D., Hjelm, R. P., Hu, J., & Wu, J. (2011). A theoretical model for the dynamic structure of hepatitis B nucleocapsid. Biophysical Journal, 101, 2476–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L., et al. (2008). Criteria for annotation of plant MicroRNAs. The Plant Cell, 20, 3186–3190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal, D., Enoki, Y., Lavania, D., Singh, A., Sakurai, H., & Grover, A. (2011). Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.). The FEBS Journal, 278, 3076–3085.

    Article  CAS  PubMed  Google Scholar 

  • Mittal, D., Mukherjee, S. K., Vasudevan, M., & Mishra, N. S. (2013). Identification of tissue-preferential expression patterns of rice miRNAs. Journal of Cellular Biochemistry, 114, 2071–2081.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R. I. (1998). Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes and Development, 12, 3788–3796.

    Article  CAS  PubMed  Google Scholar 

  • Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., & Shigeoka, S. (2009). Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant and Cell Physiology, 50, 2210–2222.

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux, P., & Karpinski, S. (2002). Signal transduction in response to excess light: Getting out of the chloroplast. Current Opinion in Plant Biology, 5, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, M., Nobuta, K., Vemaraju, K., Tej, S. S., Skogen, J. W., & Meyers, B. C. (2006). Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Research, 34, D731–D735.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, S., Tamura, P. J., Roth, M. R., Prasad, P., & Welti, R. (2016). Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell and Environment, 39, 787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilsen, C. T., Goodall, G. J., & Bracken, C. P. (2012). IsomiRs–the overlooked repertoire in the dynamic microRNAome. Trends in Genetics, 28, 544–549.

    Article  CAS  PubMed  Google Scholar 

  • Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A., & Scharf, K.-D. (2001). Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress and Chaperones, 6, 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 4, 30–44.

    Article  Google Scholar 

  • Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Ozga, J. A., Kaur, H., Savada, R. P., & Reinecke, D. M. (2016). Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. Journal of Experimental Botany, 68, 1885–1894.

    Google Scholar 

  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, A.-L., Ding, Y.-F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy, R., Ravichandran, S., Mahdi, M. S. R., Huang, D., Reimer, E., Domaratzki, M., et al. (2016). Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Scientific Reports, 6, 39373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez, V. M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M. E., & Velasco, P. (2015). Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biology, 15, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronemus, M., Vaughn, M. W., & Martienssen, R. A. (2006). MicroRNA-targeted and small interfering RNA–mediated mRNA degradation is regulated by Argonaute, Dicer, and RNA-dependent RNA polymerase in Arabidopsis. The Plant Cell, 18, 1559–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibo, N. J., Lourenço, T., & Oliveira, M. M. (2008). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103, 609–623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sailaja, B., Voleti, S., Subrahmanyam, D., Sarla, N., Prasanth, V. V., Bhadana, V., et al. (2014). Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa. Rice Science, 21, 3–12.

    Article  Google Scholar 

  • Samad, A. F., Sajad, M., Nazaruddin, N., Fauzi, I. A., Murad, A. M., Zainal, Z., et al. (2017). MicroRNA and transcription factor: Key players in plant regulatory network. Frontiers in Plant Science 8.

  • Satheesh, V., Chidambaranathan, P., Jagannadham, P. T., Kumar, V., Jain, P. K., Chinnusamy, V., et al. (2016). Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.). Plant Signaling and Behavior, 11, e992698.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Todaka, D., Kudo, M., Mizoi, J., Kidokoro, S., Zhao, Y., et al. (2016). The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 14, 1756–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöffl, F., Prändl, R., & Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiology, 117, 1135–1141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao, M.-H., Sasaki, K., & Adzic, R. R. (2006). Pd–Fe nanoparticles as electrocatalysts for oxygen reduction. Journal of the American Chemical Society, 128, 3526–3527.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, P. S., Agarwal, P., Gupta, K., & Agarwal, P. K. (2015). Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB Plants, 7, plv054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2010). Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 27, 431–432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, J., Liu, Q., Hu, B., & Wu, W. (2017). Photoreceptor PhyB involved in Arabidopsis temperature perception and heat-tolerance formation. International Journal of Molecular Sciences, 18, 1194.

    Article  PubMed Central  Google Scholar 

  • Stephenson, T. J., McIntyre, C. L., Collet, C., & Xue, G.-P. (2010). TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes. Functional and Integrative Genomics, 10, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Sun, F., Guo, G., Du, J., Guo, W., Peng, H., Ni, Z., et al. (2014). Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biology, 14, 142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12, 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Sun, W., Xu, X. H., Wu, X., Wang, Y., Lu, X., Sun, H., et al. (2015). Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Frontiers in Plant Science, 6, 372.

    PubMed  PubMed Central  Google Scholar 

  • Takemori, Y., Enoki, Y., Yamamoto, N., Fukai, Y., Adachi, K., & Sakurai, H. (2009). Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity. Biochemical Journal, 424, 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Tan, G. C., & Dibb, N. (2015). IsomiRs have functional importance. Malaysian Journal of Pathology, 37, 73–81.

    PubMed  Google Scholar 

  • Terzaghi, W. B., & Cashmore, A. R. (1995). Light-regulated transcription. Annual Review of Plant Biology, 46, 445–474.

    Article  CAS  Google Scholar 

  • Tripathi, A., Chacon, O., Singla-Pareek, S.L., Sopory, S.K., & Sanan-Mishra, N. (2018) Mapping the microRNA expression profiles in glyoxalase over-expressing salinity tolerant rice. Current Genomics,. https://doi.org/10.2174/1389202918666170228134530

  • Válóczi, A., Várallyay, É., Kauppinen, S., Burgyán, J., & Havelda, Z. (2006). Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. The Plant Journal, 47, 140–151.

    Article  PubMed  CAS  Google Scholar 

  • Viola, I. L., Camoirano, A., & Gonzalez, D. H. (2016). Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis. Plant Physiology, 170, 74–85.

    Article  CAS  PubMed  Google Scholar 

  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., & Estelle, M. (2016). HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications, 7, 10269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., et al. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE, 7, e48445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Rashotte, A. M., & Dane, F. (2014). Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling. Plant Cell Reports, 33, 1673–1686.

    Article  CAS  PubMed  Google Scholar 

  • Wigge, P. A. (2013). Ambient temperature signalling in plants. Current Opinion in Plant Biology, 16, 661–666.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., et al. (2010). DNA methylation mediated by a microRNA pathway. Molecular Cell, 38, 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, S. K., Knouf, E. C., Parkin, R. K., Fritz, B. R., Lin, D. W., Dennis, L. M., et al. (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Research, 21, 1450–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., et al. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 10, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10, 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, A., Mizukami, Y., & Sakurai, H. (2005). Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. Journal of Biological Chemistry, 280, 11911–11919.

    Article  CAS  PubMed  Google Scholar 

  • Youens-Clark, K., Buckler, E., Casstevens, T., Chen, C., DeClerck, G., Derwent, P., et al. (2010). Gramene database in 2010: Updates and extensions. Nucleic Acids Research, 39, D1085–D1094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young, J. C., Obermann, W. M., & Hartl, F. U. (1998). Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. Journal of Biological Chemistry, 273, 18007–18010.

    Article  CAS  PubMed  Google Scholar 

  • Young, L. W., Wilen, R. W., & Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55, 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A., Liu, D., Hua, C., Yan, A., Liu, B., Wu, M., et al. (2016). The Arabidopsis Gene zinc finger protein 3 (ZFP3) is involved in salt stress and osmotic stress response. PLoS ONE, 11, e0168367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66, 1749–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R., Marshall, D., Bryan, G. J., & Hornyik, C. (2013). Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS ONE, 8, e57233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Wu, D., Kong, F., Lin, K., Zhang, H., & Li, G. (2017). The Arabidopsis thaliana nuclear factor Y transcription factors. Frontiers in Plant Science, 7, 2045.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Aslam and Dr. S.K. Mukherjee for generation of the sRNA libraries. The research was supported by financial grants received from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeti Sanan-Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Description of libraries used in the analysis. (S1) Degradome library details. (S2) AGO library details. (XLSX 9 kb)

40502_2017_329_MOESM2_ESM.xlsx

List of targets predicted for all the miRs. (S1) Targets predicted using Cleveland tool (S2) Targets predicted using psRNA Target tool. (XLSX 164 kb)

40502_2017_329_MOESM3_ESM.xlsx

List of heat deregulated miRs and the fold change in their expression values calculated using the PB library values as control. (XLSX 54 kb)

List of putative HSE- and LRE- containing miRs along with their expression profiles. (XLSX 23 kb)

List of AGO-associated miRs and their isomiRs. (XLSX 3435 kb)

40502_2017_329_MOESM6_ESM.xlsx

Expression of heat deregulated miR variants. (S1) Expression of Template-based isomiRs (S2) Expression of Non-Template based variants. (S3) Expression of polymorphic isomiRs. (XLSX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Goswami, K., Sopory, S.K. et al. “Mirador” on the potential role of miRNAs in synergy of light and heat networks. Ind J Plant Physiol. 22, 587–607 (2017). https://doi.org/10.1007/s40502-017-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0329-5

Keywords

Navigation