Skip to main content

Advertisement

Log in

Targeting the Immune System With Pharmacotherapy in Schizophrenia

  • Schizophrenia and Other Psychotic Disorders (J Csernansky, Section Editor)
  • Published:
Current Treatment Options in Psychiatry Aims and scope Submit manuscript

Opinion statement

The clinical manifestations of increased cytokine activity in individuals with schizophrenia have not been clearly delineated; thus, planning pharmacological interventions remains an entirely empirical endeavor. Although there are many preliminary findings regarding the use of adjunct pharmacotherapeutic strategies targeting the immune system, in most instances, clearly efficacious results require further validation. Antipsychotics remain the most effective pharmacological treatment approach in schizophrenia, and evidence suggests that they impact cytokine and immune cellular physiology in the patient, though this requires improved mechanistic understanding. Omega-3 polyunsaturated fatty acids (PUFAs) and statins may be a beneficial supplement in the situation where a patient with metabolic syndrome is a candidate for dietary modifications and/or control of LDL-cholesterol. Such an approach would require adjusting the diet and pharmacology towards a profile that could have antiinflammatory effects, especially considering that adiposity is a source of increased inflammatory activity. Another strategy would be the addition of the neurosteroid pregnenolone, which appears to be well tolerated. Non-steroidal antiinflammatory drugs (NSAIDS) are routinely prescribed for other clinical conditions; thus, their use in schizophrenia could be easily implemented; however, their efficacy is unclear, and side effects require careful monitoring. The use of tetracycline antibiotics such as minocycline or antiimmune drugs such as azathioprine or methotrexate should be left to an academic research group, where the outcome and molecular signatures can be monitored in a controlled manner. Ultimately, the benefit/risk ratio of each of these adjunct treatments should be considered on a case-by-case basis. Finally, lifestyle changes such as improved sleep, reduced smoking, and weight reduction strategies, all factors which are associated with increased inflammation, should not be overlooked when working towards an improved functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hinze-Selch D, Pollmächer T. In vitro cytokine secretion in individuals with schizophrenia: results, confounding factors, and implications for further research. Brain Behav Immun. 2001;15:282–318.

    Article  CAS  PubMed  Google Scholar 

  2. • Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 1–14 The most up to date meta-analysis of peripheral cytokine activity in schizophrenia and related psychiatric illnesses.

  3. Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155:101–8.

    Article  PubMed  Google Scholar 

  4. Song X-Q, Lv L-X, Li W-Q, Hao Y-H, Zhao J-P. The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry. 2009;65:481–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chase KA, Rosen C, Gin H, Bjorkquist O, Feiner B, Marvin R, Conrin S, Sharma RP. Metabolic and inflammatory genes in schizophrenia. Psychiatry Res. 2015;225:208–11.

    Article  CAS  PubMed  Google Scholar 

  6. Chase KA, Cone JJ, Rosen C, Sharma RP. The value of interleukin 6 as a peripheral diagnostic marker in schizophrenia. BMC Psychiatry. 2016;16:152.

    Article  PubMed  PubMed Central  Google Scholar 

  7. García-Bueno B, Bioque M, Mac-Dowell KS, et al. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40:376–87.

    Article  PubMed  Google Scholar 

  8. Sharma RP, Rosen C, Melbourne JK, Feiner B, Chase KA. Activated phosphorylated STAT1 levels as a biologically relevant immune signal in schizophrenia. Neuroimmunomodulation. 2016; doi:10.1159/000450581.

    PubMed  Google Scholar 

  9. Cabrera B, Bioque M, Penadés R, González-Pinto A., Parellada M, Bobes J, Lobo A, García-Bueno B, Leza JC, Bernardo M (2016) Cognition and psychopathology in first-episode psychosis: are they related to inflammation? Psychol Med 1–12

  10. Leza JC, Bueno B, Bioque M, Arango C, Parellada M, Do K, O’Donnell P, Bernardo M. Inflammation in schizophrenia: a question of balance. Neurosci Biobehav Rev. 2015;55:612–26.

    Article  PubMed  Google Scholar 

  11. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hess JL, Tylee DS, Barve R, et al. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophr Res. 2016;176:114–24.

    Article  PubMed  Google Scholar 

  13. Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA. Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry. 2015;172:1112–21.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fillman SG, Cloonan N, Miller LC, Weickert CS. Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:133.

    Article  CAS  PubMed  Google Scholar 

  15. •• Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 1009–1026 Extensive review that covers both positive and negative findings of CNS inflammatory markers and gial cell alterations in schizophrenia.

  16. Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.

    Article  PubMed  Google Scholar 

  17. Hafizi S, Tseng H-H, Rao N, et al (2016) Imaging microglial activation in untreated first-episode psychosis: a PET study with [(18)F]FEPPA. Am J Psychiatry appiajp201616020171

  18. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25:181–213.

    Article  CAS  PubMed  Google Scholar 

  19. Khandaker GM, Dantzer R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology. 2015; doi:10.1007/s00213-015-3975-1.

    PubMed  PubMed Central  Google Scholar 

  20. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2016;42:1–88.

    Google Scholar 

  21. Frydecka D, Misiak B, Pawlak-Adamska E, Karabon L, Tomkiewicz A, Sedlaczek P, Kiejna A, Beszłej JA. Interleukin-6: the missing element of the neurocognitive deterioration in schizophrenia? The focus on genetic underpinnings, cognitive impairment and clinical manifestation. Eur Arch Psychiatry Clin Neurosci. 2015;265:449–59.

    PubMed  Google Scholar 

  22. Martínez-Cengotitabengoa M, Mac-Dowell KS, Leza JC, Micó JA, Fernandez M, Echevarría E, Sanjuan J, Elorza J, González-Pinto A. Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr Res. 2012;137:66–72.

    Article  PubMed  Google Scholar 

  23. Bulzacka E, Boyer L, Schürhoff F, et al (2016) Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: eesults from the multicentric FACE-SZ dataset. Schizophr Bull 42:sbw029

  24. Horváth S, Mirnics K. Immune system disturbances in schizophrenia. Biol Psychiatry. 2014;75:316–23.

    Article  PubMed  Google Scholar 

  25. Chen M-L, Wu S, Tsai T-C, Wang L-K, Tsai F-M. Regulation of macrophage immune responses by antipsychotic drugs. Immunopharmacol Immunotoxicol. 2013;35:573–80.

    Article  CAS  PubMed  Google Scholar 

  26. Chen M-L, Tsai T-C, Wang L-K, Lin Y-Y, Tsai Y-M, Lee M-C, Tsai F-M. Clozapine inhibits Th1 cell differentiation and causes the suppression of IFN-γ production in peripheral blood mononuclear cells. Immunopharmacol Immunotoxicol. 2012;34:686–94.

    Article  CAS  PubMed  Google Scholar 

  27. Debnath M. Adaptive immunity in schizophrenia: functional implications of T cells in the etiology, course and treatment. J NeuroImmune Pharmacol. 2015;10:610–9.

    Article  PubMed  Google Scholar 

  28. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Røge R, Møller BK, Andersen CR, Correll CU, Nielsen J. Immunomodulatory effects of clozapine and their clinical implications: what have we learned so far? Schizophr Res. 2012;140:204–13.

    Article  PubMed  Google Scholar 

  30. Witte L De, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS, Bahn S (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154:23–29

  31. Song X, Fan X, Li X, Zhang W, Gao J, Zhao J, Harrington A, Ziedonis D, Lv L. Changes in pro-inflammatory cytokines and body weight during 6-month risperidone treatment in drug naïve, first-episode schizophrenia. Psychopharmacology. 2014;231:319–25.

    Article  CAS  PubMed  Google Scholar 

  32. Kéri S, Szabó C, Kelemen O. Antipsychotics influence toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav Immun. 2016:1–9.

  33. Chen ML, Tsai TC, Lin YY, Tsai YM, Wang LK, Lee MC, Tsai FM. Antipsychotic drugs suppress the AKT/NF-κB pathway and regulate the differentiation of T-cell subsets. Immunol Lett. 2011;140:81–91.

    Article  CAS  PubMed  Google Scholar 

  34. Cotel M-C, Lenartowicz EM, Natesan S, Modo MM, Cooper JD, Williams SCR, Kapur S, Vernon AC. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2015;25:2098–107.

    Article  CAS  Google Scholar 

  35. Zhu F, Zheng Y, Ding YQ, Liu Y, Zhang X, Wu R, Guo X, Zhao J. Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One. 2014; doi:10.1371/journal.pone.0093966.

    Google Scholar 

  36. Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S. The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-γ. Prog Neuro-Psychopharmacology Biol Psychiatry. 2008;32:42–8.

    Article  CAS  Google Scholar 

  37. Wang H, Liu S, Tian Y, Wu X, He Y, Li C, Namaka M, Kong J, Li H, Xiao L. Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front Cell Neurosci. 2015;9:1–11.

    Google Scholar 

  38. Kato T, Mizoguchi Y, Monji A, Horikawa H, Suzuki SO, Seki Y, Iwaki T, Hashioka S, Kanba S. Inhibitory effects of aripiprazole on interferon-γ-induced microglial activation via intracellular Ca2+ regulation in vitro. J Neurochem. 2008;106:815–25.

    Article  CAS  PubMed  Google Scholar 

  39. Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Progress in neuro-psychopharmacology & biological psychiatry putative neuroprotective agents in neuropsychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:135–45.

    Article  CAS  Google Scholar 

  40. Berk M, Dean O, Drexhage H, et al. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med. 2013;11:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fond G, Hamdani N, Kapczinski F, et al. Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand. 2014;129:163–79.

    Article  CAS  PubMed  Google Scholar 

  42. Sommer IE, Van Westrhenen R, Begemann MJH, De Witte LD, Leucht S, Kahn RS. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40:181–91.

    Article  PubMed  Google Scholar 

  43. Laan W, Grobbee D, Selten J-P, Heijnen C, Kahn R, Burger H. Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2010;71:520–7.

    Article  CAS  PubMed  Google Scholar 

  44. • Marini S, De Berardis D, Orsolini L, et al. Celecoxib adjunctive treatment to risperidone in schizophrenia: a review of randomized clinical add-on trials. Eur Neuropsychopharmacol. 2016;26:S534–5. Provides an overview of trials with adjunct celecoxib in schizophrenia

    Article  Google Scholar 

  45. Baheti T, Nischal A, Nischal A, Khattri S, Arya A, Tripathi A, Pant KK. A study to evaluate the effect of celecoxib as add-on to olanzapine therapy in schizophrenia. Schizophr Res. 2013;147:201–2.

    Article  PubMed  Google Scholar 

  46. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10:301–16.

    Article  CAS  PubMed  Google Scholar 

  47. Miller BJ, Dias JK, Lemos HP, Buckley PF. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry. 2016;77:275–6.

    Article  PubMed  Google Scholar 

  48. • Miller BJ, Buckley PF. Monoclonal antibody immunotherapy in psychiatric disorders. The Lancet Psychiatry. 2017;4:13–5. Provides a rationale for the use of antibody immunotherapy in schizophrenia and outlines trials in preparation

    Article  PubMed  Google Scholar 

  49. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression. JAMA Psychiatry. 2013;70:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller BJ, Buckley PF. The case for adjunctive monoclonal antibody immunotherapy in schizophrenia. Psychiatr Clin North Am. 2016;39:187–98.

    Article  PubMed  Google Scholar 

  51. Watkins CC, Andrews SR. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr Res. 2015; doi:10.1016/j.schres.2015.07.018.

    PubMed  Google Scholar 

  52. Fekadu A, Mesfin M, Medhin G, et al. Adjuvant therapy with minocycline for schizophrenia (the MINOS trial): study protocol for a double-blind randomized placebo-controlled trial. Trials. 2013;14:1–10.

    Article  Google Scholar 

  53. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P (2016) Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull sbw088

  54. Oya K, Kishi T, Iwata N (2014) Efficacy and tolerability of minocycline augmentation therapy in schizophrenia: a systematic review and meta-analysis of randomized controlled trials. 483–491

  55. • Xiang Y, Zheng W, Wang S, Yang X, Cai D, Ng CH, Ungvari GS, Kelly DL, Xu W, Xiang Y. Adjunctive minocycline for schizophrenia: a meta-analysis of randomized controlled trials. Eur Neuropsychopharmacol. 2017;27:8–18. Most recent meta-analysis regarding the use of minocycline in schizophrenia

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhry IB, Husain N, ur Rahman R, et al (2015) A randomised double-blind placebo-controlled 12-week feasibility trial of methotrexate added to treatment as usual in early schizophrenia: study protocol for a randomised controlled trial. Trials 16:9

  57. Chan ESL, Cronstein BN. Methotrexate—how does it really work? Nat Rev Rheumatol. 2010;6:175–8.

    Article  CAS  PubMed  Google Scholar 

  58. Levine J, Gutman J, Feraro R, Levy P, Kimhi R, Leykin I, Deckmann M, Handzel Z, Shinitzky M. Side effect profile of azathioprine in the treatment of chronic schizophrenic patients. Neuropsychobiology. 1997;36:172–6.

    Article  CAS  PubMed  Google Scholar 

  59. Barnholt KE, Kota RS, Aung HH, Rutledge JC. Adenosine blocks IFN-γ-induced phosphorylation of STAT1 on serine 727 to reduce macrophage activation. J Immunol. 2009;183:6767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Z, Zhao P, Li A, Lv X, Gao Y, Sun H, Ding Y, Liu J. Effects of methotrexate on plasma cytokines and cardiac remodeling and function in postmyocarditis rats. Mediat Inflamm. 2009; doi:10.1155/2009/389720.

    Google Scholar 

  61. Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology. 2012;62:1527–43.

    Article  CAS  PubMed  Google Scholar 

  62. Ritsner MS. Pregnenolone, dehydroepiandrosterone, and schizophrenia: alterations and clinical trials. CNS Neurosci Ther. 2010;16:32–44.

    Article  CAS  PubMed  Google Scholar 

  63. Vuksan-Ćusa B, Šagud M, Radoš I. The role of dehydroepiandrosterone (DHEA) in schizophrenia. Psychiatr Danub. 2016;28:30–3.

    PubMed  Google Scholar 

  64. Marx CE, Lee J, Subramaniam M, et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology. 2014;231:3647–62.

    Article  CAS  PubMed  Google Scholar 

  65. Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci. 2014;8:134.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ritsner M, Maayan R, Gibel A, Weizman A. Differences in blood pregnenolone and dehydroepiandrosterone levels between schizophrenia patients and healthy subjects. Eur Neuropsychopharmacol. 2007;17:358–65.

    Article  CAS  PubMed  Google Scholar 

  67. Marx CE, Keefe RSE, Buchanan RW, et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009;34:1885–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Savitz A (2010) Multi-year continuation study of pregnenolone in patients with schizophrenia. Neurosteroids as Nov. Ther. Schizophr. other CNS Disord. Soc. Biol. Psychiatry Annu. New Orleans, LA

  69. Kreinin A, Bawakny N, Ritsner M (2014) Adjunctive pregnenolone ameliorates the cognitive deficits in recent-onset schizophrenia: an 8-week, randomized, double-blind, placebo-controlled trial. Clin Schizophr Relat Psychoses 1–31

  70. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacology Biol Psychiatry. 2011;35:676–92.

    Article  CAS  Google Scholar 

  71. Lanté F, Meunier J, Guiramand J, De Ferreira MCJ, Cambonie G, Aimar R, Cohen-Solal C, Maurice T, Vignes M, Barbanel G. Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus. 2008;18:602–9.

    Article  PubMed  Google Scholar 

  72. Farokhnia M, Azarkolah A, Adinehfar F, et al. N-Acetyl cysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2013;36:185–92.

    Article  CAS  PubMed  Google Scholar 

  73. Berk M, Copolov D, Dean O, et al. N-Acetyl cysteine as a glutathione precursor for schizophrenia-a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64:361–8.

    Article  CAS  PubMed  Google Scholar 

  74. Rossell SL, Francis PS, Galletly C, et al. N-Acetyl cysteine (NAC) in schizophrenia resistant to clozapine: a double blind randomised placebo controlled trial targeting negative symptoms. BMC Psychiatry. 2016;16:320.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fusar-poli P, Berger G. Eicosapentaenoic acid interventions in schizophrenia. J Clin Psychopharmacol. 2012;32:179–85.

    Article  CAS  PubMed  Google Scholar 

  76. Calder PCP. Mechanisms of action of (n-3) fatty acids. J Nutr. 2012;142:592S–9S.

    Article  CAS  PubMed  Google Scholar 

  77. Calder PC. Long-chain fatty acids and inflammation. Proc Nutr Soc. 2012;71:284–9.

    Article  PubMed  Google Scholar 

  78. Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Cell Mol Physiol. 2003;284:L84–9.

    Article  CAS  Google Scholar 

  79. Kong W, Yen J-H, Vassiliou E, Adhikary S, Toscano MG, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Heal Dis. 2010;9:12.

    Article  Google Scholar 

  80. Zapata-Gonzalez F, Rueda F, Petriz J, Domingo P, Villarroya F, Diaz-Delfin J, de Madariaga M a, Domingo JC (2008) Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR :RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol 84:1172–1182

  81. • Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. J Clin Med. 2016;5:1–26. Reviews clinical data investigating the use of adjunct omega-3 PUFAs in schizophrenia and other psychiatric disorders

    Article  Google Scholar 

  82. Amminger GP. Long-chain n-3 fatty acids for indicated prevention of psychotic disorders. Arch Gen Psychiatry. 2010;67:146–54.

    Article  CAS  PubMed  Google Scholar 

  83. Markulev C, Mcgorry PD, Nelson B, et al. NEURAPRO-E study protocol: a multicentre randomized controlled trial of omega-3 fatty acids and cognitive-behavioural case management for patients at ultra high risk of schizophrenia and other psychotic disorders. Early Interv Psychiatry. 2015; doi:10.1111/eip.12260.

    PubMed  Google Scholar 

  84. Jougasaki M, Ichiki T, Takenoshita Y, Setoguchi M. Statins suppress interleukin-6-induced monocyte chemo-attractant protein-1 by inhibiting Janus kinase/signal transducers and activators of transcription 1 (JAK-STAT1) pathways in human vascular endothelial cells. Br J Pharmacol. 2010;159:1294–303.

  85. Gómez-García A, Martínez Torres G, Ortega-Pierres LE, Rodríguez-Ayala E, Alvarez-Aguilar C. Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia. Rev española Cardiol. 2007;60:1242–9.

    Article  Google Scholar 

  86. Vincenzi B, Stock S, Borba CPC, et al. A randomized placebo-controlled pilot study of pravastatin as an adjunctive therapy in schizophrenia patients: effect on inflammation, psychopathology, cognition and lipid metabolism. Schizophr Res. 2014;159:395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ghanizadeh A, Rezaee Z, Dehbozorgi S, Berk M, Akhondzadeh S. Lovastatin for the adjunctive treatment of schizophrenia: a preliminary randomized double-blind placebo-controlled trial. Psychiatry Res. 2014;219:431–5.

    Article  CAS  PubMed  Google Scholar 

  88. Begemann MJH, Schutte MJL, Slot MIE, Doorduin J, Bakker PR, van Haren NEM, Sommer IEC. Simvastatin augmentation for recent-onset psychotic disorder: a study protocol. BBA Clin. 2015;4:52–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sharma AM, Staels B. Review: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92:386–95.

    Article  CAS  PubMed  Google Scholar 

  90. Chase K, Sharma RP. Epigenetic developmental programs and adipogenesis: implications for psychotropic induced obesity. Epigenetics. 2013;8:1133–40.

    Article  CAS  PubMed  Google Scholar 

  91. Henderson DC, Fan X, Sharma B, Copeland PM, Borba CP, Boxill R, Freudenreich O, Cather C, Eden Evins A, Goff DC. A double-blind, placebo-controlled trial of rosiglitazone for clozapine-induced glucose metabolism impairment in patients with schizophrenia. Acta Psychiatr Scand. 2009;119:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith RC, Jin H, Li C, Bark N, Shekhar A, Dwivedi S, Mortiere C, Lohr J, Hu Q, Davis JM. Effects of pioglitazone on metabolic abnormalities, psychopathology, and cognitive function in schizophrenic patients treated with antipsychotic medication: a randomized double-blind study. Schizophr Res. 2013;143:18–24.

    Article  PubMed  Google Scholar 

  93. Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J. 2007; doi:10.1016/j.ahj.2006.11.005.

    PubMed  Google Scholar 

  94. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77:521–46.

    Article  CAS  PubMed  Google Scholar 

  95. Boyle DL, Soma K, Hodge J, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015;74:1311–6.

    Article  CAS  PubMed  Google Scholar 

  96. Miller BJ, Goldsmith DR. Towards an immunophenotype of schizophrenia: progress, potential mechanisms, and future directions. Neuropsychopharmacology. 2016;42:1–19.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by PHS grant (NIH) R01MH094358 (R.P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv P. Sharma MD.

Ethics declarations

Conflict of Interest

Jennifer K. Melbourne declares that she has no conflict of interest. Benjamin Feiner declares that he has no conflict of interest. Cherise Rosen declares that she has no conflict of interest. Rajiv P. Sharma declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melbourne, J.K., Feiner, B., Rosen, C. et al. Targeting the Immune System With Pharmacotherapy in Schizophrenia. Curr Treat Options Psych 4, 139–151 (2017). https://doi.org/10.1007/s40501-017-0114-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40501-017-0114-0

Keywords

Navigation