Skip to main content

Advertisement

Log in

Pattern Recognition Beyond the Surface: Soluble Pattern Recognition and Their Role in Periodontitis

  • Clinical Periodontics (Y Stathopoulou, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pattern recognition receptors (PRRs) are important mediators of tissue homeostasis. Soluble forms of PRRs, including a novel group of molecules called peptidoglycan recognition proteins (PGRPs) have very important regulatory roles. However, they remain poorly understood compared to other forms of PRRs, particularly in the context of periodontitis. In this review, we discuss the different types of soluble PRRs, their functions, and the limited knowledge available about their regulation during periodontitis. We introduce PGRPs and the emerging data on their expression during periodontitis.

Recent Findings

Interest in soluble PRRs continues to grow due to their tremendous value in diagnostic and therapeutic application. Specific mechanisms of how soluble PRRs are generated have now been identified including alternative spicing, ectodomain shedding, and diffusion from membrane PRRs. Proteins that have PRR functions but no corresponding membrane PRR have also been identified. They are collectively termed as pattern recognition molecules (PRMs). PGRPs are the newest members of these human PRM. Four isoforms of PGRP, namely, PGRP1, PGRP2, PGRP3, and PGRP4, have been identified. Consensus is emerging that PRMs are generally elevated in serum, gingival crevicular fluid, and saliva during periodontitis, and the levels of PRMs reduce with non-surgical therapy. However, the relationship between periodontitis and levels of soluble isoforms of membrane-bound PRRs is much more complex. Conflicting reports have emerged on the levels of these proteins during periodontitis. Similarly, very few studies have examined the function and regulation of sPRRs in periodontitis. Limited available evidence suggests that PGRP1 may be a key regulator of gingival inflammation. However, not much is known about other isoforms of PGRPs. Recently, we reported increased levels of PGRP3 and PGPR4 in gingiva and saliva during periodontitis, suggesting an important but unknown regulation of these proteins in the periodontium.

Summary

Soluble PRRs, particularly PGRPs, have a contextual divalent function. They maintain homeostasis via mechanisms that dampen tissue inflammation. Contextually, they also aid in activating inflammation and antigen presentation. Understanding the function and regulation of soluble PRRs is vital for development of novel biologically mediated periodontal therapies and point of care diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21(3):172–83. https://doi.org/10.1016/j.molmed.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  3. Razzouk S, Termechi O. Host genome, epigenome, and oral microbiome interactions: toward personalized periodontal therapy. J Periodontol. 2013;84(9):1266–71.

    Article  PubMed  Google Scholar 

  4. Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol. 2009;21(4):242–53. https://doi.org/10.1016/j.smim.2009.06.005.

  5. •• Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300. https://doi.org/10.1126/science.1068883. This is a landmark review on how innate immunity helps discriminate between microbial non-self, missing self, and for the recognition of induced or altered self in order appropriately respond.

    Article  CAS  PubMed  Google Scholar 

  6. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12(1):991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015.

    Article  CAS  PubMed  Google Scholar 

  7. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6. https://doi.org/10.3389/fimmu.2015.00422.

  8. •• Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. https://doi.org/10.1101/sqb.1989.054.01.003. Janeway first proposed the hypothesis that PRRs recognize MAMPs and are the bridge that links innate and adaptive immunity in this paper, which was published as part of the introduction to cold spring harbor symposium. This fundamentally changed the field of innate immunology leading to the 2011 Nobel prize (to other scientists who built on Janeway’s hypothesis) in recognition of the importance of innate immunity which in 1989 was considered “a minor curiosity.”

    Article  CAS  PubMed  Google Scholar 

  9. • Prakasam S, Srinivasan M. Evaluation of salivary biomarker profiles following non-surgical management of chronic periodontitis. Oral diseases. 2014;20(2):171–7. In this study, we showed sTLR2 regulation in periodontitis before and after non-surgical periodontal therapy.

    Article  CAS  PubMed  Google Scholar 

  10. •• Swaminathan V, Prakasam S, Puri V, Srinivasan M. Role of salivary epithelial toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis. J Periodontal Res. 2013;48(6):757–65. This is the ever study to show that examined PGRP3 transcript levels in the context of periodontal disease by measuring the mRNA levels in shed epithelial cells found in saliva.

    Article  CAS  PubMed  Google Scholar 

  11. Royet J, Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol. 2007;5(4):264–77.

    Article  CAS  PubMed  Google Scholar 

  12. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol. 2018;2(1):6. https://doi.org/10.1038/s41698-018-0048-z.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. https://doi.org/10.1038/s41392-021-00687-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol. 2020;50(5):624–42. https://doi.org/10.1002/eji.201847811. A very comprehensive review on soluble pattern recognition molecules as it related to the airway innate immune response. It goes into great details on each PRM function, structure, etc., and is an important read for introduction to this topic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. • Jin L, Darveau RP. Soluble CD14 levels in gingival crevicular fluid of subjects with untreated adult periodontitis. J Periodontol. 2001;72(5):634–40. https://doi.org/10.1902/jop.2001.72.5.634. First study to look at sCD14 in the context of periodontitis.

    Article  CAS  PubMed  Google Scholar 

  16. Kuroishi T, Tanaka Y, Sakai A, Sugawara Y, Komine K, Sugawara S. Human parotid saliva contains soluble toll-like receptor (TLR) 2 and modulates TLR2-mediated interleukin-8 production by monocytic cells. Mol Immunol. 2007;44(8):1969–76. https://doi.org/10.1016/j.molimm.2006.09.028.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Liu X, Cao X. Extracellular pattern recognition molecules in health and diseases. Cell Mol Immunol. 2015;12(3):255–7. https://doi.org/10.1038/cmi.2014.81.

    Article  CAS  PubMed  Google Scholar 

  18. Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. J Immunol. 2015;194(1):13–20. https://doi.org/10.4049/jimmunol.1400844.

    Article  CAS  PubMed  Google Scholar 

  19. Bazil V, Horejsí V, Baudys M, Kristofová H, Strominger JL, Kostka W, et al. Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur J Immunol. 1986;16(12):1583–9. https://doi.org/10.1002/eji.1830161218.

    Article  CAS  PubMed  Google Scholar 

  20. Bufler P, Stiegler G, Schuchmann M, Hess S, Krüger C, Stelter F, et al. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol. 1995;25(2):604–10. https://doi.org/10.1002/eji.1830250244.

    Article  CAS  PubMed  Google Scholar 

  21. Labéta MO, Vidal K, Nores JE, Arias M, Vita N, Morgan BP, et al. Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. J Exp Med. 2000;191(10):1807–12. https://doi.org/10.1084/jem.191.10.1807.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Isaza-Guzmán DM, Aristizábal-Cardona D, Martínez-Pabón MC, Velásquez-Echeverri H, Tobón-Arroyave SI. Estimation of sCD14 levels in saliva obtained from patients with various periodontal conditions. Oral Dis. 2008;14(5):450–6. https://doi.org/10.1111/j.1601-0825.2007.01400.x. This study showed that sCD14 levels in saliva are higher in periodontitis and can be an useful biomarker for periodontitis.

    Article  PubMed  Google Scholar 

  23. Russell MW, Bobek LA, Brock JH, Hajishengallis G, Tenovuo J. Innate Humoral Defense Factors. Mucos Immun. 2005:73–93. https://doi.org/10.1016/B978-012491543-5/50009-7.

  24. LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD, Affolter M, et al. Soluble forms of toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol. 2003;171(12):6680–9. https://doi.org/10.4049/jimmunol.171.12.6680.

    Article  CAS  PubMed  Google Scholar 

  25. Langjahr P, Díaz-Jiménez D, De la Fuente M, Rubio E, Golenbock D, Bronfman FC, et al. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS ONE. 2014;9(12): e104624. https://doi.org/10.1371/journal.pone.0104624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. •• Buduneli N, Özçaka Ö, Nalbantsoy A. Salivary and plasma levels of toll-like receptor 2 and toll-like receptor 4 in chronic periodontitis. J Periodontol. 2011;82(6):878–84. https://doi.org/10.1902/jop.2010.100467. First study to look at sTLR2 and sTLR4 in context of periodontitis.

    Article  CAS  PubMed  Google Scholar 

  27. Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, Yoshikai Y. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol. 2000;165(12):6682–6. https://doi.org/10.4049/jimmunol.165.12.6682.

    Article  CAS  PubMed  Google Scholar 

  28. ten Oever J, Kox M, van de Veerdonk FL, Mothapo KM, Slavcovici A, Jansen TL, et al. The discriminative capacity of soluble toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol. 2014;15(1):55. https://doi.org/10.1186/s12865-014-0055-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. •• Zunt SL, Burton LV, Goldblatt LI, Dobbins EE, Srinivasan M. Soluble forms of Toll-like receptor 4 are present in human saliva and modulate tumour necrosis factor-alpha secretion by macrophage-like cells. Clin Exp Immunol. 2009;156(2):285–93. https://doi.org/10.1111/j.1365-2249.2009.03854.x. First study to show that sTLR4 is present in saliva.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyakushima N, Mitsuzawa H, Nishitani C, Sano H, Kuronuma K, Konishi M, et al. Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J Immunol. 2004;173(11):6949–54. https://doi.org/10.4049/jimmunol.173.11.6949.

    Article  CAS  PubMed  Google Scholar 

  31. • AlQallaf H, Hamada Y, Blanchard S, Shin D, Gregory R, Srinivasan M. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS ONE. 2018;13(12): e0200231. https://doi.org/10.1371/journal.pone.0200231. Recent study on utility of sTLR2 and sTLR4 as biomarkers for periodontitis.

    Article  PubMed  PubMed Central  Google Scholar 

  32. • Guan R, Malchiodi EL, Wang Q, Schuck P, Mariuzza RA. Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Iα. J Biol Chem. 2004;279(30):31873–82. Very important structural biology study that suggested that PGRPs can bind to other host and microbial proteins and not just peptidoglycan.

    Article  CAS  PubMed  Google Scholar 

  33. Guan R, Roychowdhury A, Ember B, Kumar S, Boons GJ, Mariuzza RA. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci USA. 2004;101(49):17168–73. https://doi.org/10.1073/pnas.0407856101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: sweeping up immune threats. Mol Immunol. 2019;112:291–304. Highly recommended review for getting introduced to and understanding the functions of soluble defense collagens.

    Article  CAS  PubMed  Google Scholar 

  35. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol. 2017;198(10):3775–89. https://doi.org/10.4049/jimmunol.1700373.

    Article  CAS  PubMed  Google Scholar 

  36. Watford WT, Ghio AJ, Wright JR. Complement-mediated host defense in the lung. Am J Physiol-Lung Cell Mol Physiol. 2000;279(5):L790–8. https://doi.org/10.1152/ajplung.2000.279.5.L790.

    Article  CAS  PubMed  Google Scholar 

  37. Bohlson SS, O’Conner SD, Hulsebus HJ, Ho M-M, Fraser DA. Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front Immunol. 2014;5. https://doi.org/10.3389/fimmu.2014.00402.

  38. Bottazzi B, Vouret-Craviari V, Bastone A, De Gioia L, Matteucci C, Peri G, et al. Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component. J Biol Chem. 1997;272(52):32817–23. https://doi.org/10.1074/jbc.272.52.32817.

    Article  CAS  PubMed  Google Scholar 

  39. • Adawi AA, Ahmed F, Peeran SA, Ramalingam K, Dawood T, Elhassan A, Peeran SW. Role of Pentraxin-3 in Periodontal Inflammation-A Comprehensive Review. J Pharma Res Int. 2021;209–19. A nice review on available data on PTX-3 in the context of periodontitis.

  40. Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med. 1930;52(4):561–71. https://doi.org/10.1084/jem.52.4.561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599–610. https://doi.org/10.1056/NEJMoa040967.

    Article  CAS  PubMed  Google Scholar 

  42. Mihlan M, Stippa S, Józsi M, Zipfel PF. Monomeric CRP contributes to complement control in fluid phase and on cellular surfaces and increases phagocytosis by recruiting factor H. Cell Death Differ. 2009;16(12):1630–40. https://doi.org/10.1038/cdd.2009.103.

    Article  CAS  PubMed  Google Scholar 

  43. Salazar J, Martínez MS, Chávez-Castillo M, Núñez V, Añez R, Torres Y, et al. C-reactive protein: an in-depth look into structure, function, and regulation. Int Sch Res Notices. 2014;2014: 653045. https://doi.org/10.1155/2014/653045.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci. 2009;66(1):9–26. https://doi.org/10.1007/s00018-008-8321-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jumeau C, Awad F, Assrawi E, Cobret L, Duquesnoy P, Giurgea I, et al. Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages. PLoS ONE. 2019;14(5): e0217005. https://doi.org/10.1371/journal.pone.0217005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Derebe MG, Zlatkov CM, Gattu S, Ruhn KA, Vaishnava S, Diehl GE, et al. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. Elife. 2014;3: e03206. https://doi.org/10.7554/eLife.03206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liukkonen A, He Q, Gürsoy U, Pussinen P, Gröndahl-Yli-Hannuksela K, Liukkonen J, et al. Mannose-binding lectin gene polymorphism in relation to periodontal infection. J Periodontal Res. 2017;52(3):540–5.

    Article  CAS  PubMed  Google Scholar 

  48. Maffei G, Brouwer N, Dolman KM, van der Velden U, Roos D, Loos BG. Plasma levels of mannan-binding lectin in relation to periodontitis and smoking. J Periodontol. 2005;76(11):1881–9. https://doi.org/10.1902/jop.2005.76.11.1881.

    Article  CAS  PubMed  Google Scholar 

  49. Louropoulou A, Van Der Velden U, Schoenmaker T, Catsburg A, Savelkoul PH, Loos BG. Mannose-binding lectin gene polymorphisms in relation to periodontitis. J Clin Periodontol. 2008;35(11):923–30.

    Article  CAS  PubMed  Google Scholar 

  50. Caribé PMV, Villar CC, Romito GA, Pacanaro AP, Strunz CMC, Takada JY, et al. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin. J Periodontol. 2020;91(7):900–5. https://doi.org/10.1002/JPER.19-0236.

    Article  CAS  PubMed  Google Scholar 

  51. Glas J, Beynon V, Bachstein B, Steckenbiller J, Manolis V, Euba A, et al. Increased plasma concentration of surfactant protein D in chronic periodontitis independent of SFTPD genotype: potential role as a biomarker. Tissue Antigens. 2008;72(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu J, Guo B, Gan X, Zhang L, He Y, Liu B, et al. Association of circulating leptin and adiponectin with periodontitis: a systematic review and meta-analysis. BMC Oral Health. 2017;17(1):104. https://doi.org/10.1186/s12903-017-0395-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gupta S, Suri P, Patil PB, Rajguru JP, Gupta P, Patel N. Comparative evaluation of role of hs C-reactive protein as a diagnostic marker in chronic periodontitis patients. J Family Med Prim Care. 2020;9(3):1340–7. https://doi.org/10.4103/jfmpc.jfmpc_1063_19.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ardila CM, Guzmán IC. Comparison of serum amyloid A protein and C-reactive protein levels as inflammatory markers in periodontitis. J Periodontal Implant Sci. 2015;45(1):14–22. https://doi.org/10.5051/jpis.2015.45.1.14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Türer Ç, Ballı U, Güven B. Fetuin-A, serum amyloid A and tumor necrosis factor alpha levels in periodontal health and disease. Oral Dis. 2017;23(3):379–86. https://doi.org/10.1111/odi.12625.

    Article  PubMed  Google Scholar 

  56. Vuletic S, Taylor BA, Tofler GH, Chait A, Marcovina SM, Schenck K, et al. SAA and PLTP activity in plasma of periodontal patients before and after full-mouth tooth extraction. Oral Dis. 2008;14(6):514–9. https://doi.org/10.1111/j.1601-0825.2007.01411.x.

    Article  CAS  PubMed  Google Scholar 

  57. Peeran SW, Elhassan A, Zameer M, Basheer SN, Mustafa M, Thiruneervannan M. Role of serum amyloid A protein in various diseases with special reference to periodontal and periapical inflammation—a review. J Clin Diagn Res. 2020;14(12):1–5. https://doi.org/10.7860/JCDR/2020/46072.14296.

    Article  CAS  Google Scholar 

  58. Liu C, Xu Z, Gupta D, Dziarski R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J Biol Chem. 2001;276(37):34686–94. https://doi.org/10.1074/jbc.M105566200.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem. 1996;271(23):13854–60. https://doi.org/10.1074/jbc.271.23.13854.

    Article  CAS  PubMed  Google Scholar 

  60. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci U S A. 1998;95(17):10078–82. https://doi.org/10.1073/pnas.95.17.10078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 2006;7(8):232. https://doi.org/10.1186/gb-2006-7-8-232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem. 2006;281(9):5895–907. https://doi.org/10.1074/jbc.M511631200.

    Article  CAS  PubMed  Google Scholar 

  63. Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y, Stahl GL, et al. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood. 2005;106(7):2551–8. https://doi.org/10.1182/blood-2005-02-0530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lo D, Tynan W, Dickerson J, Mendy J, Chang HW, Scharf M, et al. Peptidoglycan recognition protein expression in mouse Peyer’s patch follicle associated epithelium suggests functional specialization. Cell Immunol. 2003;224(1):8–16. https://doi.org/10.1016/s0008-8749(03)00155-2.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, van der Fits L, Voerman JS, Melief MJ, Laman JD, Wang M, et al. Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta. 2005;1752(1):34–46. https://doi.org/10.1016/j.bbapap.2005.07.001.

    Article  CAS  PubMed  Google Scholar 

  66. Duerr CU, Salzman NH, Dupont A, Szabo A, Normark BH, Normark S, et al. Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunol. 2011;4(3):325–34. https://doi.org/10.1038/mi.2010.71.

    Article  CAS  PubMed  Google Scholar 

  67. Uehara A, Sugawara Y, Kurata S, Fujimoto Y, Fukase K, Kusumoto S, et al. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol. 2005;7(5):675–86. https://doi.org/10.1111/j.1462-5822.2004.00500.x.

    Article  CAS  PubMed  Google Scholar 

  68. Dziarski R, Gupta D. Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 2010;16(3):168–74. https://doi.org/10.1177/1753425910366059.

    Article  CAS  PubMed  Google Scholar 

  69. Ghosh A, Lee S, Dziarski R, Chakravarti S. A novel antimicrobial peptidoglycan recognition protein in the cornea. Invest Ophthalmol Vis Sci. 2009;50(9):4185–91. https://doi.org/10.1167/iovs.08-3040.

    Article  PubMed  Google Scholar 

  70. Guan R, Mariuzza RA. Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol. 2007;15(3):127–34. https://doi.org/10.1016/j.tim.2007.01.006.

    Article  CAS  PubMed  Google Scholar 

  71. • De Marzi MC, Todone M, Ganem MB, Wang Q, Mariuzza RA, Fernandez MM, et al. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology. 2015;145(3):429–42. https://doi.org/10.1111/imm.12460. This paper goes against the accepted paradigm that PGRPs are anti-inflammatory. This showed that in macrophages, PGRPs can induce a pro-inflammatory state by opsonizing bacteria and enhancing their uptake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem. 2006;281(9):5895–907.

    Article  CAS  PubMed  Google Scholar 

  73. Saha S, Jing X, Park SY, Wang S, Li X, Gupta D, et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe. 2010;8(2):147–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kashyap DR, Wang M, Liu LH, Boons GJ, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med. 2011;17(6):676–83. https://doi.org/10.1038/nm.2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bobrovsky P, Manuvera V, Polina N, Podgorny O, Prusakov K, Govorun V, et al. Recombinant human peptidoglycan recognition proteins reveal antichlamydial activity. Infect Immun. 2016;84(7):2124–30. https://doi.org/10.1128/IAI.01495-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saha S, Qi J, Wang S, Wang M, Li X, Kim YG, et al. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe. 2009;5(2):137–50. https://doi.org/10.1016/j.chom.2008.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shrivastav A, Dabrowski AN, Conrad C, Baal N, Hackstein H, Plog S, et al. Peptidoglycan recognition protein 3 does not alter the outcome of pneumococcal pneumonia in mice. Front Microbiol. 2018;9:103. https://doi.org/10.3389/fmicb.2018.00103.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Luo Q, Li X, Zhang L, Yao F, Deng Z, Qing C, et al. Serum PGLYRP1 is a highly discriminatory biomarker for the diagnosis of rheumatoid arthritis. Mol Med Rep. 2019;19(1):589–94. https://doi.org/10.3892/mmr.2018.9632.

    Article  CAS  PubMed  Google Scholar 

  79. •• Jing X, Zulfiqar F, Park SY, Nunez G, Dziarski R, Gupta D. Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis. J Immunol. 2014;193(6):3055–69. https://doi.org/10.4049/jimmunol.1301548. This is the latest paper from the Dziarski group that has been cited in this review that shows the important regulatory role of PGRPs in inflammatory diseases. Dziarski and his group first cloned human PGRPs and have since experimentally demonstrated that PGRPs are central component of the innate immune response.

    Article  CAS  PubMed  Google Scholar 

  80. Ghadimi DFS, Ebsen M, Rocken C, de Vrese M, et al. Calcium propionate alleviates DSS-induced colitis and influences lipid profile, interferon gamma, peptidoglycan recognition protein 3 and calprotectin in one-year-old female and male C57BL/6 Mice. Sci J Immunol Immunother. 2017;1(1):007–16.

    Google Scholar 

  81. Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J. Peptidoglycan recognition protein 3 (PglyRP3) has an anti-inflammatory role in intestinal epithelial cells. Immunobiology. 2012;217(4):412–9. https://doi.org/10.1016/j.imbio.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  82. Zenhom M, Hyder A, Kraus-Stojanowic I, Auinger A, Roeder T, Schrezenmeir J. PPARgamma-dependent peptidoglycan recognition protein 3 (PGlyRP3) expression regulates proinflammatory cytokines by microbial and dietary fatty acids. Immunobiology. 2011;216(6):715–24. https://doi.org/10.1016/j.imbio.2010.10.008.

    Article  CAS  PubMed  Google Scholar 

  83. Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARgamma and peptidoglycan recognition protein 3. J Nutr. 2011;141(5):971–7. https://doi.org/10.3945/jn.110.136176.

    Article  CAS  PubMed  Google Scholar 

  84. Park SY, Gupta D, Kim CH, Dziarski R. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS ONE. 2011;6(9): e24961. https://doi.org/10.1371/journal.pone.0024961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. • Chen DSM, Le S, Thomas N, Tran D. Snail1 regulates the tumor-infiltrating regulatory T cell population in breast cancer through Pglyrp3. Cancer Res. 2018;78:4748. First publication to show that PGRP3 plays an important role in tumor immunity.

    Article  Google Scholar 

  86. Gowda RN, Redfern R, Frikeche J, Pinglay S, Foster JW, Lema C, et al. Functions of peptidoglycan recognition proteins (Pglyrps) at the ocular surface: bacterial keratitis in gene-targeted mice deficient in pglyrp-2, -3 and -4. PLoS ONE. 2015;10(9): e0137129. https://doi.org/10.1371/journal.pone.0137129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goldman SM, Kamel F, Ross GW, Jewell SA, Marras C, Hoppin JA, et al. Peptidoglycan recognition protein genes and risk of Parkinson’s disease. Mov Disord. 2014;29(9):1171–80. https://doi.org/10.1002/mds.25895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun C, Mathur P, Dupuis J, Tizard R, Ticho B, Crowell T, et al. Peptidoglycan recognition proteins Pglyrp3 and Pglyrp4 are encoded from the epidermal differentiation complex and are candidate genes for the Psors4 locus on chromosome 1q21. Hum Genet. 2006;119(1–2):113–25.

    Article  CAS  PubMed  Google Scholar 

  89. Zulfiqar F, Hozo I, Rangarajan S, Mariuzza RA, Dziarski R, Gupta D. Genetic association of peptidoglycan recognition protein variants with inflammatory bowel disease. PLoS ONE. 2013;8(6): e67393. https://doi.org/10.1371/journal.pone.0067393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. • Rohatgi A, Ayers CR, Khera A, McGuire DK, Das SR, Matulevicius S, et al. The association between peptidoglycan recognition protein-1 and coronary and peripheral atherosclerosis: Observations from the Dallas Heart Study. Atherosclerosis. 2009;203(2):569–75. https://doi.org/10.1016/j.atherosclerosis.2008.07.015. First study demonstrating PGRP1 as an important disease biomarker.

    Article  CAS  PubMed  Google Scholar 

  91. Brownell NK, Khera A, DeLemos JA, Ayers CR, Rohtagi A. Association between peptidoglycan recognition protein-1 and incident atherosclerotic cardiovascular disease events. J Am Coll Cardiol. 2016;67(19):2310–2.

    Article  CAS  PubMed  Google Scholar 

  92. • Prakasam S, Lin L-J, Kreth J, Merritt J. PGRPs may play a crucial role in sensing oral bacteria. J Dent Res. 2019;98(A):2643. In this publication, we reported that PGRP preferentially binds to putative oral pathogens.

    Google Scholar 

  93. Poluan RH, Sudigyo D, Rahmawati G, Setiasari DW, Sesotyosari SL, Wardana T, et al. Transcriptome related to avoiding immune destruction in nasopharyngeal cancer in Indonesian patients using next-generation sequencing. Asian Pac J Cancer Prev. 2020;21(9):2593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shan NL, Minden A, Furmanski P, Bak MJ, Cai L, Wernyj R, Sargsyan D, Cheng D, Wu R, Kuo HD, Li SN, Fang M, Maehr H, Kong AN, Suh N. Analysis of the transcriptome: regulation of cancer stemness in breast ductal carcinoma in situ by vitamin D compounds. Cancer Prev Res (Phila). 2020;13(8):673–686. https://doi.org/10.1158/1940-6207.CAPR-19-0566.

  95. Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296(3):378–81. https://doi.org/10.1002/ar.22641.

    Article  Google Scholar 

  96. • Prakasam S, Lin L, Blackwell E, Miller J, Sood S. Salivary peptidoglycan recognition proteins levels are increased during chronic periodontitis. J Dent Res. 2018;97((Spec Iss B): 2826. In this publication, we showed the differential regulation of PGRP during health and disease.

  97. • Read CB, Kuijper JL, Hjorth SA, Heipel MD, Tang X, Fleetwood AJ, et al. Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1. J Immunol. 2015;194(4):1417–21. https://doi.org/10.4049/jimmunol.1402303This is an important paper because it showed that PGRP1 may have direct cell signaling function as it complexes with a TREM1 receptor.

  98. •• Nylund KM, Ruokonen H, Sorsa T, Heikkinen AM, Meurman JH, Ortiz F, et al. Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease. J Periodontol. 2018;89(1):117–29. First study to show the utility of PGRP1 as an important biomarker for oral inflammation, and this study suggests an additional potential oral systemic link via PGRPs.

    CAS  PubMed  Google Scholar 

  99. Teixeira MK, Lira-Junior R, Lourenço EJV, Telles DM, Boström EA, Figueredo CM, et al. The modulation of the TREM-1/PGLYRP1/MMP-8 axis in peri-implant diseases. Clin Oral Invest. 2020;24(5):1837–44.

    Article  Google Scholar 

  100. Silbereisen A, Hallak AK, Nascimento GG, Sorsa T, Belibasakis GN, Lopez R, et al. Regulation of PGLYRP1 and TREM-1 during progression and resolution of gingival inflammation. JDR Clin Transl Res. 2019;4(4):352–9. https://doi.org/10.1177/2380084419844937.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaraman Prakasam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

No animal or human subjects were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Periodontics

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakasam, S., Merritt, J. & Kreth, J. Pattern Recognition Beyond the Surface: Soluble Pattern Recognition and Their Role in Periodontitis. Curr Oral Health Rep 9, 185–196 (2022). https://doi.org/10.1007/s40496-022-00324-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-022-00324-x

Keywords

Navigation