Skip to main content

Advertisement

Log in

Current and Emerging Applications of 3D Printing in Restorative Dentistry

  • Digital and Esthetic Dentistry (E Anadioti and P Stathopoulou, Section Editors)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

3D printing, or additive manufacturing, is an emerging technology in the dental field. As it continues to advance beyond diagnostic purposes, it shifts towards the fabrication of permanent prostheses utilizing existing and novel biomaterials. A review and comparison of the current research on materials, techniques, and applications of 3D printing available for restorative use was conducted.

Recent Findings

Currently, 3D printing used across the field of restorative dentistry, includes laboratory models and casting patterns, interim full and partial coverage restorations, surgical guides, occlusal splints, maxillofacial prosthetics, removable prostheses, and implants. Resins are most often used while ceramic and hybrid materials are currently under investigation and development.

Summary

While the current research available highlights 3D printing’s potential in the dental field, more research is needed on the existing and developing materials and printers, thus allowing for an exponential increase of this technology’s applications in restorative dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Guvendiren M, Molde J, Soares RMD, Kohn J, Soares RMD. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679–93. https://doi.org/10.1021/acsbiomaterials.6b00121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawood A, Marti BM, Sauret-Jackson V, Darwood A, Marti BM. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9. https://doi.org/10.1038/sj.bdj.2015.914.

    Article  CAS  PubMed  Google Scholar 

  3. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, et al. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101. https://doi.org/10.1063/1.4935926.

  4. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245–56. https://doi.org/10.1007/s11517-012-1001-x.

    Article  PubMed  Google Scholar 

  5. Derby B. Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc. 2011;31(14):2543–50. https://doi.org/10.1016/j.jeurceramsoc.2011.01.016.

  6. • Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont. 2017;30(5):474–84. https://doi.org/10.11607/ijp.5079. Current review of the status of additive manufacturing and 3D printing in the field of prosthodontics, particularly the different printing techniques, the materials involved, and its applications.

  7. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017:9(2):5090/aa7279. Doi:https://doi.org/10.1088/1758-5090/aa7279.

  8. Tack P, Victor J, Gemmel P, Annemans L, Tack P, Victor J, et al. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. https://doi.org/10.1186/s12938-016-0236-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang H, Hsieh MF, Zhang G, Ouyang H, Zeng C, Yan B, et al. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery. Australas Phys Eng Sci Med. 2015;38(1):109–17. https://doi.org/10.1007/s13246-015-0330-0.

  10. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012:4(3):5082/4/3/035005. Epub 2012 Aug 23. https://doi.org/10.1088/1758-5082/4/3/035005.

  11. Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg 2017:46(1):67–71. Doi:S0901–5027(16)30275–2.

  12. Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol. 2000;24(4):149–53. https://doi.org/10.1080/03091900050163427.

    Article  CAS  PubMed  Google Scholar 

  13. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641–4. https://doi.org/10.1111/j.1532-849X.2012.00888.x.

    Article  PubMed  Google Scholar 

  14. • Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent. 2015;16(1):1–9. Thorough review summarizing the technical progress of 3D printing in dentistry, specifically outlining the types rapid prototyping and their applications in restorative dentistry and facial prosthetics.

  15. Fathi HM, Al-Masoody AH, El-Ghezawi N, Johnson A. The accuracy of fit of crowns made from wax patterns produced conventionally (hand formed) and via CAD/CAM Technology. Eur J Prosthodont Restor Dent. 2016;24(1):10–7. https://doi.org/10.1922/EJPRD_1444Fathi08.

    PubMed  Google Scholar 

  16. Anadioti E, Lee C, Schweitzer A. Fit of CAD/CAM tooth-supported single crowns and fixed dental prostheses. Curr Oral Health Rep. 2017;4(2):142–50. https://doi.org/10.1007/s40496-017-0139-x.

    Article  Google Scholar 

  17. Brawek P, Wolfart S, Endres L, Kirsten A, Reich S. The clinical accuracy of single crowns exclusively fabricated by digital workflow—the comparison of two systems. Clin Oral Invest. 2013;17(9):2119–25. https://doi.org/10.1007/s00784-013-0923-5.

    Article  Google Scholar 

  18. Su T, Sun J. Comparison of marginal and internal fit of 3-unit ceramic fixed dental prostheses made with either a conventional or digital impression. J Prosthet Dent. 2016;116(3):362–7. https://doi.org/10.1016/j.prosdent.2016.01.018.

    Article  PubMed  Google Scholar 

  19. Abduo J. Fit of CAD/CAM implant frameworks: a comprehensive review. J Oral Implantol. 2014;40(6):758–66. https://doi.org/10.1563/AAID-JOI-D-12-00117.

    Article  PubMed  Google Scholar 

  20. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948. https://doi.org/10.1155/2014/783948.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive technology: update on current materials and applications in dentistry. J Prosthodont. 2017;26(2):156–63. https://doi.org/10.1111/jopr.12510.

    Article  PubMed  Google Scholar 

  22. Bhargav A, Sanjairaj V, Rosa V, Feng LW, Fuh Yh J. Applications of additive manufacturing in dentistry: a review. J Biomed Mater Res B Appl Biomater. 2017; https://doi.org/10.1002/jbm.b.33961.

  23. Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed ST. Dimensional accuracy of 7 die materials. J Prosthodont. 2005;14(1):25–31. https://doi.org/10.1111/j.1532-849X.2005.00007.x.

    Article  PubMed  Google Scholar 

  24. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145(1):108–15. https://doi.org/10.1016/j.ajodo.2013.05.011.

    Article  Google Scholar 

  25. Scherer M. Digital dental model production with high accuracy 3D printing. FormLabs White Paper. 2017;219:1–17. https://doi.org/10.1038/sj.bdj.2015.914.

    Google Scholar 

  26. Homsy FR, Ozcan M, Khoury M, Majzoub ZAK. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J Prosthet Dent 2017. Doi:S0022–3913(17)30518–8.

  27. Eftekhar Ashtiani R, Nasiri Khanlar L, Mahshid M, Moshaverinia A. Comparison of dimensional accuracy of conventionally and digitally manufactured intracoronal restorations. J Prosthet Dent 2017. Doi:S0022–3913(17)30230–5.

  28. Bhaskaran E, Azhagarasan NS, Miglani S, Ilango T, Krishna GP, Gajapathi B. Comparative evaluation of marginal and internal gap of Co-Cr copings fabricated from conventional wax pattern, 3D printed resin pattern and DMLS tech: an in vitro study. J Indian Prosthodont Soc. 2013;13(3):189–95. https://doi.org/10.1007/s13191-013-0283-5.

    PubMed  PubMed Central  Google Scholar 

  29. Davda K, Osnes C, Dillon S, Wu J, Hyde P, Keeling A. An investigation into the trueness and precision of copy denture templates produced by rapid prototyping and conventional means. Eur J Prosthodont Restor Dent. 2017;25(4):186–92. https://doi.org/10.1922/EJPRD_01716Davda07.

    CAS  PubMed  Google Scholar 

  30. Chen H, Wang H, Lv P, Wang Y, Sun Y. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. Biomed Res Int. 2015;2015:453968. https://doi.org/10.1155/2015/453968.

    PubMed  PubMed Central  Google Scholar 

  31. Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J 2012:31(1):40–46. Doi:JST.JSTAGE/dmj/2011–113.

  32. Cheah CM, Chua CK, Tan KH. Integration of laser surface digitizing with CAD/CAM techniques for developing facial prostheses. Part 2: development of molding techniques for casting prosthetic parts. Int J Prosthodont. 2003;16(5):543–8.

    PubMed  Google Scholar 

  33. Tasopoulos T, Kouveliotis G, Polyzois G, Karathanasi V. Fabrication of a 3D printing definitive obturator prosthesis: a clinical report. Acta Stomatol Croat. 2017;51(1):53–8. https://doi.org/10.15644/asc51/1/7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hu F, Pei Z, Wen Y. Using intraoral scanning technology for three-dimensional printing of Kennedy class I removable partial denture metal framework: a clinical report. J Prosthodont. 2017; https://doi.org/10.1111/jopr.12712.

  35. Williams RJ, Bibb R, Rafik TA. Technique for fabricating patterns for removable partial denture frameworks using digitized casts and electronic surveying. J Prosthet Dent. 2004;91(1):85–8. https://doi.org/10.1016/S0022391303006838.

    Article  CAS  PubMed  Google Scholar 

  36. Alifui-Segbaya F, Williams RJ, George R. Additive Manufacturing: A Novel Method For fabricating cobalt-chromium removable partial denture frameworks. Eur J Prosthodont Restor Dent. 2017;25(2):73–8. https://doi.org/10.1922/EJPRD_1598Alifui-Segbaya06.

    PubMed  Google Scholar 

  37. Revilla Leon M, Klemm IM, Garcia-Arranz J, Ozcan M. 3D metal printing—additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25(3):143–7. https://doi.org/10.1922/EJPRD_RevillaLeon05.

    CAS  PubMed  Google Scholar 

  38. Hong DGK, Oh JH. Recent advances in dental implants. Maxillofac Plast Reconstr Surg. 2017;39(1):33. https://doi.org/10.1186/s40902-017-0132-2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deeb GR, Allen RK, Hall VP, Whitley D, Laskin DM, Bencharit S. How accurate are implant surgical guides produced with Ddesktop stereolithographic 3-dimentional printers? J Oral Maxillofac Surg 2017:75(12):2559.e8. Doi:S0278–2391(17)31019–4.

  40. Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. The Journal of Prosthetic Dentistry 2014:112(5):1095e1 Doi: https://doi.org/10.1016/jprosdent2014.04.026.

  41. •• Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent. 2016;2016:8590971. https://doi.org/10.1155/2016/8590971.. Clinical study showing short-term success of 110 titanium single implants produced via additive manufacturing.

  42. Osman RB, van der Veen, A J, Huiberts D, Wismeijer D, Alharbi N 3D-printing zirconia implants: a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs J Mech Behav Biomed Mater 2017:75:521–528 Doi: https://doi.org/10.1016/j.jmbbm.2017.08.018

  43. Cheng Y, Lin D, Jiang C, Lin Y. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic. Int J Numer Methods Biomed Eng 2017:33(5):n/a. Doi:https://doi.org/10.1002/cnm.2820.

  44. Christensen GJ. Marginal fit of gold inlay castings. J Prosthetic Dent. 1966;16(2):297–305.

    Article  CAS  Google Scholar 

  45. • Ishida Y, Miyasaka T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent Mater J. 2016;35(2):250–6. https://doi.org/10.4012/dmj.2015-278. In-vitro study that compares the quality of different printers.

  46. Salmi M, Paloheimo KS, Tuomi J, Ingman T, Makitie A. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. J R Soc Interface. 2013;10(84):20130203. https://doi.org/10.1098/rsif.2013.0203.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent. 2017:118(2):208–215. Doi:S0022–3913(16)30613–8.

  48. Joo HS, Park SW, Yun KD, Lim HP. Complete-mouth rehabilitation using a 3D printing technique and the CAD/CAM double scanning method: a clinical report. J Prosthet Dent. 2016;116(1):3–7. https://doi.org/10.1016/j.prosdent.2016.01.007.

    Article  PubMed  Google Scholar 

  49. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2017. Doi:S0109–5641(17)30447–5.

  50. Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont. 2017;9(4):265–70. https://doi.org/10.4047/jap.2017.9.4.265.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alharbi N, Alharbi S, Cuijpers VMJI, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2017. Doi:S1883–1958(17)30106–8.

  52. Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, et al. 3D-Printable Antimicrobial Composite Resins. Adv Funct Mater. 2015;25(43):6756–67. https://doi.org/10.1002/adfm.201502384.

  53. Silva NRFA, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont. 2011;20(2):93–6. https://doi.org/10.1111/j.1532-849X.2010.00623.x.

    Article  PubMed  Google Scholar 

  54. Ebert J, Özkol E, Zeichner A, Uibel K, Weiss Ö, Koops U, et al. Direct inkjet printing of dental prostheses made of zirconia. J Dent Res. 2009;88(7):673–6. https://doi.org/10.1177/0022034509339988.

  55. Anja MW, Gingter P, Kramer M, Telle R. Novel prospects and possibilities in additive manufacturing of ceramics by means of direct inkjet printing. Adv Mech Eng. 2014;6:141346. https://doi.org/10.1155/2014/141346.

    Article  Google Scholar 

  56. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93(12):1235–42. https://doi.org/10.1177/0022034514553627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. Printed origami structures. Adv Mater. 2010;22(20):2251–4. https://doi.org/10.1002/adma.200904232.

    Article  CAS  PubMed  Google Scholar 

  58. Muth JT, Dixon PG, Woish L, Gibson LJ, Lewis JA. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc Natl Acad Sci U S A. 2017;114(8):1832–7. https://doi.org/10.1073/pnas.1616769114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yun JS, Park T, Jeong YH, Cho JH. Development of ceramic-reinforced photopolymers for SLA 3D printing technology. Appl Phys A. 2016;122(6):629. https://doi.org/10.1007/s00339-016-0157-x.

    Article  Google Scholar 

  60. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Additive manufacturing of polymer-derived ceramics. Science. 2016;351(6268):58–62. https://doi.org/10.1126/science.aad2688.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evanthia Anadioti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Digital and Esthetic Dentistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anadioti, E., Kane, B. & Soulas, E. Current and Emerging Applications of 3D Printing in Restorative Dentistry. Curr Oral Health Rep 5, 133–139 (2018). https://doi.org/10.1007/s40496-018-0181-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-018-0181-3

Keywords

Navigation