Skip to main content
Log in

The Advance of Plasmonic-Electric Nanopipette Sensing in Single Cells

  • Nanodrugs (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Nanopipette provides a promising limited space, which demonstrates achievements in optical, electrochemical, and mass spectral measurements on the nanoscales. It has been applied to uncover the potential properties of populations and dynamics of individual molecules and individual particles. Plasmonic-electric nanopipette tip probe of individual cells provides more accurate diacrisis and grasp of elementary chemical and biological processes. Recent advances in individual cells provide tools for hypersensitive analysis. In this review, we summarize the results of recent progresses in studying nanopipette photonic and electrical probe tips of individual cells. The benefits of confining these optical-electric nanopipette tip probe to a compatible dimension measurement interface are instantiated. Ultimately, the opportunities and challenges of optical-electric nanopipette tip probe of single cell are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng XT, Li CM. Single cell analysis at the nanoscale. Chem Soc Rev. 2012;41(6):2061–71. https://doi.org/10.1039/c1cs15265c.

    Article  CAS  PubMed  Google Scholar 

  2. Ying YL, Yu RJ, Hu YX, Gao R, Long YT. Single antibody-antigen interactions monitored via transient ionic current recording using nanopore sensors. Chem Commun (Camb). 2017;53(61):8620–3. https://doi.org/10.1039/c7cc03927a.

    Article  CAS  Google Scholar 

  3. Masson JF, Breault-Turcot J, Faid R, Poirier-Richard HP, Yockell-Lelievre H, Lussier F, et al. Plasmonic nanopipette biosensor. Anal Chem. 2014;86(18):8998–9005. https://doi.org/10.1021/ac501473c.

    Article  CAS  PubMed  Google Scholar 

  4. Ying YL, Li YJ, Mei J, Gao R, Hu YX, Long YT, et al. Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore. Nat Commun. 2018;9(1):3657. https://doi.org/10.1038/s41467-018-05832-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao S, Ding S, Liu Y, Zhu A, Shi G. Biomimetic mineralization of gold nanoclusters as multifunctional thin films for glass nanopore modification, characterization, and sensing. Anal Chem. 2017;89(15):7886–92. https://doi.org/10.1021/acs.analchem.7b00802.

    Article  CAS  PubMed  Google Scholar 

  6. Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol. 2011;6(10):615–24. https://doi.org/10.1038/nnano.2011.129.

    Article  CAS  PubMed  Google Scholar 

  7. Wu H-C, Bayley H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J Am Chem Soc. 2008;130(21):6813–9.

    Article  CAS  Google Scholar 

  8. Siwy ZS, Powell MR, Petrov A, Kalman E, Trautmann C, Eisenberg RS. Calcium-induced voltage gating in single conical nanopores. Nano Lett. 2006;6(8):1729–34.

    Article  CAS  Google Scholar 

  9. Nadappuram BP, Cadinu P, Barik A, Ainscough AJ, Devine MJ, Kang M, et al. Nanoscale tweezers for single-cell biopsies. Nat Nanotechnol. 2019;14(1):80–8.

    Article  CAS  Google Scholar 

  10. Sutter PW, Sutter EA. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nat Mater. 2007;6(5):363–6. https://doi.org/10.1038/nmat1894.

    Article  CAS  PubMed  Google Scholar 

  11. Laforge FO, Carpino J, Rotenberg SA, Mirkin MV. Electrochemical attosyringe. Proc Natl Acad Sci. 2007;104(29):11895–900.

    Article  CAS  Google Scholar 

  12. Matsuoka H, Komazaki T, Mukai Y, Shibusawa M, Akane H, Chaki A, et al. High throughput easy microinjection with a single-cell manipulation supporting robot. J Biotechnol. 2005;116(2):185–94.

    Article  CAS  Google Scholar 

  13. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–5. https://doi.org/10.1038/nature13173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111(19):7048–53. https://doi.org/10.1073/pnas.1402030111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uehara H, Osada T, Ikai A. Quantitative measurement of mRNA at different loci within an individual living cell. Ultramicroscopy. 2004;100(3-4):197–201. https://doi.org/10.1016/j.ultramic.2004.01.014.

    Article  CAS  PubMed  Google Scholar 

  16. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 2005;105(4):1171–96.

    Article  CAS  Google Scholar 

  17. Clarke RW, White SS, Zhou D, Ying L, Klenerman D. Trapping of proteins under physiological conditions in a nanopipette. Angew Chem Int Ed Eng. 2005;44(24):3747–50. https://doi.org/10.1002/anie.200500196.

    Article  CAS  Google Scholar 

  18. Munoz J-L, Coles JA. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes. J Neurosci Methods. 1987;22(1):57–64.

    Article  CAS  Google Scholar 

  19. Levis RA, Rae JL. The use of quartz patch pipettes for low noise single channel recording. Biophys J. 1993;65(4):1666–77.

    Article  CAS  Google Scholar 

  20. Actis P, Mak AC, Pourmand N. Functionalized nanopipettes: toward label-free, single cell biosensors. Bioanal Rev. 2010;1(2-4):177–85. https://doi.org/10.1007/s12566-010-0013-y.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haywood DG, Harms ZD, Jacobson SC. Electroosmotic flow in nanofluidic channels. Anal Chem. 2014;86(22):11174–80. https://doi.org/10.1021/ac502596m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rae JL. Levis RA. A method for exceptionally low noise single channel recordings. Pflugers Arch. 1992;420(5-6):618–20.

    Article  CAS  Google Scholar 

  23. Gao C, Ding S, Tan Q, Gu L-Q. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal Chem. 2009;81(1):80–6.

    Article  CAS  Google Scholar 

  24. Kim B, Murray T, Bau H. The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology. 2005;16(8):1317.

    Article  CAS  Google Scholar 

  25. Freedman J, Mattia D, Korneva G, Gogotsi Y, Friedman G, Fontecchio AK. Magnetically assembled carbon nanotube tipped pipettes. Appl Phys Lett. 2007;90(10):103108.

    Article  Google Scholar 

  26. Lu SM, Li YJ, Zhang JF, Wang Y, Ying YL, Long YT. Monitoring hydrogen evolution reaction catalyzed by MoS2 quantum dots on a single nanoparticle electrode. Anal Chem. 2019;91(16):10361–5. https://doi.org/10.1021/acs.analchem.9b02364.

    Article  CAS  PubMed  Google Scholar 

  27. Yu R-J, Ying Y-L, Hu Y-X, Gao R, Long Y-T. Label-free monitoring of single molecule immunoreaction with a nanopipette. Anal Chem. 2017;89(16):8203–6. https://doi.org/10.1021/acs.analchem.7b01921.

    Article  CAS  PubMed  Google Scholar 

  28. Freedman KJ, Crick CR, Albella P, Barik A, Ivanov AP, Maier SA, et al. On-demand surface- and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing. ACS Photonics. 2016;3(6):1036–44. https://doi.org/10.1021/acsphotonics.6b00119.

    Article  CAS  Google Scholar 

  29. Shi X, Li HW, Ying YL, Liu C, Zhang L, Long YT. In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chem Commun (Camb). 2016;52(5):1044–7. https://doi.org/10.1039/c5cc09220e.

    Article  CAS  Google Scholar 

  30. Bulbul G, Chaves G, Olivier J, Ozel R, Pourmand N. Nanopipettes as monitoring probes for the single living cell: State of the art and future directions in molecular biology. Cells. 2018;7(6). https://doi.org/10.3390/cells7060055.

  31. Zhang K, Han X, Li Y, Li SY, Zu Y, Wang Z, et al. Hand-held and integrated single-cell pipettes. J Am Chem Soc. 2014;136(31):10858–61. https://doi.org/10.1021/ja5053279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Actis P. Sampling from single cells. Small Methods. 2018, 2(3). https://doi.org/10.1002/smtd.201700300.

  33. Karhanek M, Kemp JT, Pourmand N, Davis RW, Webb CD. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett. 2005;5(2):403–7.

    Article  CAS  Google Scholar 

  34. Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF. Detecting DNA folding with nanocapillaries. Nano Lett. 2010;10(7):2493–7. https://doi.org/10.1021/nl100997s.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Bell NA, Hernández-Ainsa S, Thacker VV, Thackray AM, Bujdoso R, et al. Single protein molecule detection by glass nanopores. ACS Nano. 2013;7(5):4129–34.

    Article  CAS  Google Scholar 

  36. Bell NA, Keyser UF. Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc. 2015;137(5):2035–41. https://doi.org/10.1021/ja512521w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kowalczyk SW, Hall AR, Dekker C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 2010;10(1):324–8. https://doi.org/10.1021/nl903631m.

    Article  CAS  PubMed  Google Scholar 

  38. Bell NA, Keyser UF. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat Nanotechnol. 2016;11(7):645–51. https://doi.org/10.1038/nnano.2016.50.

    Article  CAS  PubMed  Google Scholar 

  39. Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D. A renewable nanosensor based on a glass nanopipette. J Am Chem Soc. 2006;128(51):16462–3.

    Article  CAS  Google Scholar 

  40. Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, et al. Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J Am Chem Soc. 2018;140(16):5385–92. https://doi.org/10.1021/jacs.7b12106.

    Article  CAS  PubMed  Google Scholar 

  41. Gao R, Ying YL, Li YJ, Hu YX, Yu RJ, Lin Y, et al. A 30 nm nanopore electrode: Facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew Chem Int Ed Eng. 2018;57(4):1011–5. https://doi.org/10.1002/anie.201710201.

    Article  CAS  Google Scholar 

  42. Gao R, Ying YL, Hu YX, Li YJ, Long YT. Wireless bipolar nanopore electrode for single small molecule detection. Anal Chem. 2017;89(14):7382–7. https://doi.org/10.1021/acs.analchem.7b00729.

    Article  CAS  PubMed  Google Scholar 

  43. Ozel RE, Bulbul G, Perez J, Pourmand N. Functionalized quartz nanopipette for intracellular superoxide sensing: A tool for monitoring reactive oxygen species levels in single living cell. ACS Sens. 2018;3(7):1316–21. https://doi.org/10.1021/acssensors.8b00185.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Clausmeyer J, Babakinejad B, Cordoba AL, Ali T, Shevchuk A, et al. Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano. 2016;10(3):3214–21. https://doi.org/10.1021/acsnano.5b05211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang D, Qi G, Zhou Y, Zhang Y, Wang B, Hu P, et al. Single-cell ATP detection and content analyses in electrostimulus-induced apoptosis using functionalized glass nanopipettes. Chem Commun (Camb). 2020;56(10):1561–4. https://doi.org/10.1039/c9cc08889j.

    Article  CAS  Google Scholar 

  46. Akhavan O, Ghaderi E, Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano. 2012;6(4):2904–16.

    Article  CAS  Google Scholar 

  47. Akhavan O, Ghaderi E, Rahighi R, Abdolahad M. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon. 2014;79:654–63. https://doi.org/10.1016/j.carbon.2014.08.058.

    Article  CAS  Google Scholar 

  48. Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed Eng. 2011;50(41):9638–42. https://doi.org/10.1002/anie.201102796.

    Article  CAS  Google Scholar 

  49. McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE, Matsue T, et al. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Anal Chem. 2013;85(15):7519–26. https://doi.org/10.1021/ac401476z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Yin D, Wang S, Chen HY, Liu Z. Probing low-copy-number proteins in a single living cell. Angew Chem Int Ed Eng. 2016;55(42):13215–8. https://doi.org/10.1002/anie.201608237.

    Article  CAS  Google Scholar 

  51. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors. Sensors Actuators B Chem. 1999;54(1-2):3–15.

    Article  CAS  Google Scholar 

  52. Hill RT. Plasmonic biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(2):152–68. https://doi.org/10.1002/wnan.1314.

    Article  CAS  PubMed  Google Scholar 

  53. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78(9):1667.

    Article  CAS  Google Scholar 

  54. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E. 1998;57(6):R6281.

    Article  CAS  Google Scholar 

  55. Chan S, Kwon S, Koo TW, Lee LP, Berlin AA. Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv Mater. 2003;15(19):1595–8. https://doi.org/10.1002/adma.200305149.

    Article  CAS  Google Scholar 

  56. Nicoli F, Verschueren D, Klein M, Dekker C, Jonsson MP. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 2014;14(12):6917–25. https://doi.org/10.1021/nl503034j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 1977;84(1):1–20.

    Article  CAS  Google Scholar 

  58. Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science. 1977;275(5503):1102–6.

    Google Scholar 

  59. Kneipp K, Wang Y, Kneipp H. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78(9):1667–70.

    Article  CAS  Google Scholar 

  60. Guo J, Sesena Rubfiaro A, Lai Y, Moscoso J, Chen F, Liu Y, et al. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst. 2020;145(14):4852–9. https://doi.org/10.1039/d0an00838a.

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen TD, Song MS, Ly NH, Lee SY, Joo SW. Nanostars on nanopipette tips: A Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. Angew Chem Int Ed Eng. 2019;58(9):2710–4. https://doi.org/10.1002/anie.201812677.

    Article  CAS  Google Scholar 

  62. Cao J, Liu HL, Yang JM, Li ZQ, Yang DR, Ji LN, et al. SERS detection of nucleobases in single silver plasmonic nanopores. ACS Sens. 2020;5(7):2198–204. https://doi.org/10.1021/acssensors.0c00844.

    Article  CAS  PubMed  Google Scholar 

  63. Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano. 2009;3(11):3529–36.

    Article  CAS  Google Scholar 

  64. Hanif S, Liu H, Chen M, Muhammad P, Zhou Y, Cao J, et al. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe(3+) in single cells. Anal Chem. 2017;89(4):2522–30. https://doi.org/10.1021/acs.analchem.6b04689.

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Jiang Q, Pang J, Jiang Z, Cao J, Ji L, et al. A multiparameter pH-sensitive nanodevice based on plasmonic nanopores. Adv Funct Mater. 2018;28(1). https://doi.org/10.1002/adfm.201703847.

  66. Zhang X-Y, Hu A, Zhang T, Lei W, Xue X-J, Zhou Y, et al. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano. 2011;5(11):9082–92.

    Article  CAS  Google Scholar 

  67. Xue B, Wang D, Zuo J, Kong X, Zhang Y, Liu X, et al. Towards high quality triangular silver nanoprisms: Improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale. 2015;7(17):8048–57. https://doi.org/10.1039/c4nr06901c.

    Article  CAS  PubMed  Google Scholar 

  68. Clarke RW, White SS, Zhou D, Ying L, Klenerman D. Trapping of proteins under physiological conditions in a nanopipette. Angew Chem. 2005;117(24):3813–6. https://doi.org/10.1002/ange.200500196.

    Article  Google Scholar 

  69. Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D. A renewable nanosensor based on a glass nanopipette. J Am Chem Soc. 2006;128(51):16462–3.

    Article  CAS  Google Scholar 

  70. Jayant K, Hirtz JJ, Plante IJ, Tsai DM, De Boer WD, Semonche A, et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat Nanotechnol. 2017;12(4):335–42. https://doi.org/10.1038/nnano.2016.268.

    Article  CAS  PubMed  Google Scholar 

  71. Hennig S, Van De Linde S, Bergmann S, Huser T, Sauer M. Quantitative super-resolution microscopy of nanopipette-deposited fluorescent patterns. ACS Nano. 2015;9(8):8122–30.

    Article  CAS  Google Scholar 

  72. Qian RC, Lv J, Long YT. Ultrafast mapping of subcellular domains via nanopipette-based electroosmotically modulated delivery into a single living cell. Anal Chem. 2018;90(22):13744–50. https://doi.org/10.1021/acs.analchem.8b04159.

    Article  CAS  PubMed  Google Scholar 

  73. Lv J, Qian RC, Hu YX, Liu SC, Cao Y, Zheng YJ, et al. A precise pointing nanopipette for single-cell imaging via electroosmotic injection. Chem Commun (Camb). 2016;52(96):13909–11. https://doi.org/10.1039/c6cc08125h.

    Article  CAS  Google Scholar 

  74. Schmidt A, Karas M, Dülcks T. Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom. 2003;14(5):492–500. https://doi.org/10.1016/s1044-0305(03)00128-4.

    Article  CAS  PubMed  Google Scholar 

  75. Qiu R, Zhang X, Luo H, Shao Y. Mass spectrometric snapshots for electrochemical reactions. Chem Sci. 2016;7(11):6684–8. https://doi.org/10.1039/c6sc01978a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kelly RT, Page JS, Zhao R, Qian W-J, Mottaz HM, Tang K, et al. Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal Chem. 2008;80(1):143–9.

    Article  CAS  Google Scholar 

  77. Hofstadler SA, Sannes-Lowery KA. Applications of ESI-MS in drug discovery: Interrogation of noncovalent complexes. Nat Rev Drug Discov. 2006;5(7):585–95. https://doi.org/10.1038/nrd2083.

    Article  CAS  PubMed  Google Scholar 

  78. Yuill EM, Sa N, Ray SJ, Hieftje GM, Baker LA. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm. Anal Chem. 2013;85(18):8498–502. https://doi.org/10.1021/ac402214g.

    Article  CAS  PubMed  Google Scholar 

  79. Hu J, Guan QY, Wang J, Jiang XX, Wu ZQ, Xia XH, et al. Effect of Nanoemitters on suppressing the formation of metal adduct ions in electrospray ionization mass spectrometry. Anal Chem. 2017;89(3):1838–45. https://doi.org/10.1021/acs.analchem.6b04218.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu H, Zou G, Wang N, Zhuang M, Xiong W, Huang G. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci U S A. 2017;114(10):2586–91. https://doi.org/10.1073/pnas.1615557114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saha-Shah A, Weber AE, Karty JA, Ray SJ, Hieftje GM, Baker LA. Nanopipettes: Probes for local sample analysis. Chem Sci. 2015;6(6):3334–41. https://doi.org/10.1039/c5sc00668f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silva B, Fernandes C, Guedes de Pinho P, Remiao F. Chiral resolution and enantioselectivity of synthetic cathinones: A brief review. J Anal Toxicol. 2018;42(1):17–24. https://doi.org/10.1093/jat/bkx074.

    Article  CAS  PubMed  Google Scholar 

  83. An S, Stambaugh C, Kim G, Lee M, Kim Y, Lee K, et al. Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale. 2012;4(20):6493–500. https://doi.org/10.1039/c2nr30972f.

    Article  CAS  PubMed  Google Scholar 

  84. Ando T. High-speed atomic force microscopy and its future prospects. Biophys Rev. 2018;10(2):285–92. https://doi.org/10.1007/s12551-017-0356-5.

    Article  CAS  PubMed  Google Scholar 

  85. An S, Lee K, Kim B, Noh H, Kim J, Kwon S, et al. Nanopipette combined with quartz tuning fork-atomic force microscope for force spectroscopy/microscopy and liquid delivery-based nanofabrication. Rev Sci Instrum. 2014;85(3):033702.

    Article  Google Scholar 

  86. Chen CC, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu Rev Anal Chem (Palo Alto, Calif). 2012;5:207–28. https://doi.org/10.1146/annurev-anchem-062011-143203.

    Article  CAS  Google Scholar 

  87. Schulte A, Nebel M, Schuhmann W. Scanning electrochemical microscopy in neuroscience. Annu Rev Anal Chem (Palo Alto, Calif). 2010;3:299–318. https://doi.org/10.1146/annurev.anchem.111808.073651.

    Article  CAS  Google Scholar 

  88. Ebejer N, Guell AG, Lai SC, McKelvey K, Snowden ME, Unwin PR. Scanning electrochemical cell microscopy: A versatile technique for nanoscale electrochemistry and functional imaging. Annu Rev Anal Chem (Palo Alto, Calif). 2013;6:329–51. https://doi.org/10.1146/annurev-anchem-062012-092650.

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully appreciate the National Natural Science Foundation of China (21904068, 81922041, 81570378, and 81772020); the Science and Technology of Jiangsu Province China (BK20201351, BK20170048); Jiangsu University Natural Science Research Program (19KJB150014, 19KJB340001); and Jiangsu Specially Appointed Professor program, Introduction of talent research start fund of Nanjing Medical University (NMUR2019007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Cao or Feng Chen.

Ethics declarations

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanodrugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Yu, YJ., Jiang, QY. et al. The Advance of Plasmonic-Electric Nanopipette Sensing in Single Cells. Curr Pharmacol Rep 7, 55–66 (2021). https://doi.org/10.1007/s40495-021-00249-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00249-6

Keywords

Navigation