Skip to main content

Advertisement

Log in

Mycobacterium abscessus Complex Cutaneous Infection

  • Cutaneous Mycobacterial Diseases of the Skin and Soft Tissues (C Franco-Paredes, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The worldwide increase in skin infections due to Mycobacterium abscessus, especially in Latin America, and its difficult diagnosis and treatment, makes a review of literature crucial in reminding and updating physicians about its presentation, diagnosing techniques, and management.

Recent Findings

Outbreaks are associated with cosmetic surgeries and medical tourism, but any kind of skin lesion can become infected presenting as negative typical cultures and unsuccessful empirical treatments; therefore, a high clinical suspicion is required. Molecular techniques are promising new diagnosing alternatives and treatment should be guided by susceptibility tests.

Summary

Mycobacterium abscessus complex skin infections are concerning due to difficult diagnosis, burdensome treatment, drug resistance, and high cost of management. Usually associated to cosmetic procedures, especially medical tourism, it can also be related to other incisions (C-section, injections, laparoscopy, etc.). Diagnosis requires clinical suspicion and consists of phenotypic and molecular methods to recognize the organisms to a subspecies level. Drug treatment frequently involves surgical debridement and antibiotics with special concern about resistance and adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Misch EA, Saddler C, Davis JM. Skin and soft tissue infections due to nontuberculous mycobacteria. Curr Infect Dis Rep. 2018;20(4):6. Available from: http://link.springer.com/10.1007/s11908-018-0611-3. Updated review of literature of RG-NTM makes a good analysis of some NTM and provides a good review of novel diagnosing techniques.

  2. Umrao J, Singh D, Zia A, Saxena S, Sarsaiya S, Singh S, et al. Prevalence and species spectrum of both pulmonary and extrapulmonary nontuberculous mycobacteria isolates at a tertiary care center. Int J Mycobacteriol. 2016;5(3):288–93. https://doi.org/10.1016/j.ijmyco.2016.06.008.

    Article  PubMed  Google Scholar 

  3. Baranyai Z, Krátký M, Vinšová J, Szabó N, Senoner Z, Horváti K, et al. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates. Eur J Med Chem. 2015;101:692–704. https://doi.org/10.1016/j.ejmech.2015.07.001.

    Article  PubMed  CAS  Google Scholar 

  4. Bowles P, Miller M-C, Cartwright S, Jones M. Presentation of Mycobacterium abscessus infection following rhytidectomy to a UK plastic surgery unit. BMJ Case Rep. 2014;2014(may28 1):bcr2014204000-bcr2014204000. Available from: http://casereports.bmj.com/cgi/doi/10.1136/bcr-2014-204000

    Article  Google Scholar 

  5. Blanc P, Dutronc H, Peuchant O, Dauchy F-A, Cazanave C, Neau D, et al. Nontuberculous mycobacterial infections in a French hospital: a 12-year retrospective study. Neyrolles O, editor. PLoS One. 2016;11(12):e0168290. Available from: http://dx.plos.org/10.1371/journal.pone.0168290

  6. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC, Garcia MJ, et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol. 2016;66(11):4471–9. Available from: http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001376

    Article  PubMed  Google Scholar 

  7. Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K, et al. Utility of sequencing the erm (41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. Forbes BA, editor. J Clin Microbiol. 2015;53(4):1211–5. Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.02950-14

  8. Al-Ghafli H, Al-Hajoj S. Nontuberculous mycobacteria in Saudi Arabia and gulf countries: a review. Can Respir J. 2017;2017:1–13. Available from: https://www.hindawi.com/journals/crj/2017/5035932/

    Article  Google Scholar 

  9. Wu T-S, Yang C-H, Brown-Elliott BA, Chao A-S, Leu H-S, Wu T-L, et al. Postcesarean section wound infection caused by Mycobacterium massiliense. J Microbiol Immunol Infect. 2016;49(6):955–61. https://doi.org/10.1016/j.jmii.2015.06.010.

    Article  PubMed  Google Scholar 

  10. • Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.200604-571ST. Official guideline which recommendations are followed in the many studies found, even though it requires an update.

  11. Thomson R, Donnan E, Konstantinos A. Notification of nontuberculous mycobacteria: an Australian perspective. Ann Am Thorac Soc. 2017;14(3):318–23. Available from: http://www.atsjournals.org/doi/10.1513/AnnalsATS.201612-994OI

    Article  PubMed  Google Scholar 

  12. Baker AW, Lewis SS, Alexander BD, Chen LF, Wallace RJ, Brown-Elliott BA, et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: investigation and mitigation. Clin Infect Dis. 2017;64(7):902–11. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciw877

    PubMed  PubMed Central  Google Scholar 

  13. Green DA, Whittier S, Greendyke W, Win C, Chen X, Hamele-Bena D. Outbreak of rapidly growing nontuberculous mycobacteria among patients undergoing cosmetic surgery in the Dominican Republic. Ann Plast Surg. 2017;78(1):17–21. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000637-201701000-00005

    Article  PubMed  CAS  Google Scholar 

  14. Torres-Coy JA, Rodríguez-Castillo BA, Pérez-Alfonzo R, De Waard JH. Source investigation of two outbreaks of skin and soft tissue infection by Mycobacterium abscessus subsp. abscessus in Venezuela. Epidemiol Infect. 2016;144(5):1117–20. Available from: http://www.journals.cambridge.org/abstract_S0950268815002381

    Article  PubMed  CAS  Google Scholar 

  15. Cusumano LR, Tran V, Tlamsa A, Chung P, Grossberg R, Weston G, et al. Rapidly growing Mycobacterium infections after cosmetic surgery in medical tourists: the Bronx experience and a review of the literature. Int J Infect Dis. 2017;63:1–6. https://doi.org/10.1016/j.ijid.2017.07.022.

    Article  PubMed  Google Scholar 

  16. Cheng A, Sheng W-H, Huang Y-C, Sun H-Y, Tsai Y-T, Chen M-L, et al. Prolonged postprocedural outbreak of Mycobacterium massiliense infections associated with ultrasound transmission gel. Clin Microbiol Infect. 2016;22(4):382.e1–382.e11. https://doi.org/10.1016/j.cmi.2015.11.021.

    Article  CAS  Google Scholar 

  17. Neves MS, da Silva MG, Ventura GM, Côrtes PB, Duarte RS, de Souza HS. Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes. Gastrointest Endosc. 2016;83(5):944–53. https://doi.org/10.1016/j.gie.2015.09.016.

    Article  PubMed  Google Scholar 

  18. Caierão J, Paiva JACD, Sampaio JLM, da Silva MG, DRS S, Coelho FS, et al. Multilocus enzyme electrophoresis analysis of rapidly-growing mycobacteria: an alternative tool for identification and typing. Int J Infect Dis. 2016;42:11–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1201971215002714

    Article  PubMed  CAS  Google Scholar 

  19. Schnabel D, Esposito DH, Gaines J, Ridpath A, Barry MA, Feldman KA, et al. Multistate US outbreak of rapidly growing mycobacterial infections associated with medical tourism to the Dominican Republic, 2013–20141. Emerg Infect Dis. 2016;22(8):1340–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27434822

    Article  PubMed  PubMed Central  Google Scholar 

  20. Impariale B, Di Giulio B, Moyano RD, de la Paz Santangelo M, Tártara S, Alonso V, et al. Relevancia clínica, diversidad y variabilidad genética de distintas especies del género Mycobacterium. Rev Am Med Respir. 2017;17(3) Available from: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-236X2017000300004&lng=es&tlng=es

  21. Gonzalez-Santiago TM, Drage LA. Nontuberculous mycobacteria. Dermatol Clin. 2015;33(3):563–77. https://doi.org/10.1016/j.det.2015.03.017.

    Article  PubMed  CAS  Google Scholar 

  22. • Cai SS, Chopra K, Lifchez SD. Management of Mycobacterium abscessus infection after medical tourism in cosmetic surgery and a review of literature. Ann Plast Surg. 2016;77(6):678–82. Available from: https://insights.ovid.com/crossref?an=00000637-201612000-00019. Presentation of two cases and a good review of literature of M . abscessus infection in 14 patients that underwent cosmetic tourism. Shows most common countries, disease presentation, and its treatment.

  23. Singh M, Dugdale CM, Solomon IH, Huang A, Montgomery MW, Pomahac B, et al. Rapid-growing mycobacteria infections in medical tourists: our experience and literature review. Aesthet Surg J. 2016;36(8):NP246–53. Available from: https://academic.oup.com/asj/article-lookup/doi/10.1093/asj/sjw047

    Article  PubMed  Google Scholar 

  24. Zosso C, Lienhard R, Siegrist HH, Malinverni R, Clerc O. Post liposuction infections by rapidly growing mycobacteria. Infect Dis (Auckl). 2015;47(2):69–72. Available from: http://www.tandfonline.com/doi/full/10.3109/00365548.2014.968865

    Article  Google Scholar 

  25. Yang P, Lu Y, Liu T, Zhou Y, Guo Y, Zhu J, et al. Mycobacterium abscessus infection after facial injection with autologous fat. Ann Plast Surg. 2017;78(2):138–40. Available from: https://insights.ovid.com/crossref?an=00000637-201702000-00005

    Article  PubMed  CAS  Google Scholar 

  26. Eustace K, Jolliffe V, Sahota A, Gholam K. Cutaneous Mycobacterium abscessus infection following hair transplant. Clin Exp Dermatol. 2016;41(7):768–70. Available from: http://doi.wiley.com/10.1111/ced.12900

    Article  PubMed  CAS  Google Scholar 

  27. Nomura H, Funakoshi T, Chaya A, Tanikawa A, Miyamoto Y, Ishii N. Cutaneous Mycobacterium massiliense infection after body piercing. Eur J Dermatol. 2016;26(6):635–7.

    PubMed  Google Scholar 

  28. de Sousa PP, da Silva Cruz RC, APM S, Westphal DC. Mycobacterium abscessus skin infection after tattooing—case report. An Bras Dermatol. 2015;90(5):741–3. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962015000500741&lng=en&tlng=en

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghosh R, Das S, De A, Kela H, Saha M, Maiti P. Port-site infections by nontuberculous mycobacterium: a retrospective clinico-microbiological study. Int J Mycobacteriol. 2017;6(1):34. Available from: http://www.ijmyco.org/text.asp?2017/6/1/34/201901

    Article  PubMed  Google Scholar 

  30. Kishida D, Sato M, Kobayashi C, Ueno K, Kinoshita T, Kodaira M, et al. Intractable cutaneous nontuberculous mycobacteriosis (Mycobacterium abscessus) during treatment for systemic lupus erythematosus. Intern Med. 2017;56(10):1253–7. Available from: https://www.jstage.jst.go.jp/article/internalmedicine/56/10/56_56.8053/_article

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hung K-S, Chang T-C, Lee Y-C. Rapid diagnosis of Mycobacterium abscessus hand infection by oligonucleotide array in an immunocompetent patient. J Plast Reconstr Aesthetic Surg. 2015;68(8):1158–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1748681515001795

    Article  Google Scholar 

  32. Calif E, Neuberger A, Stahl S. Iatrogenic Mycobacterium abscessus infection in a trigger finger. Indian J Tuberc. 2015;62(2):114–6. https://doi.org/10.1016/j.ijtb.2015.04.001.

    Article  PubMed  Google Scholar 

  33. Fiske LC, Homeyer DC, Zapor M, Hartzell J, Warkentien T, Weintrob AC, et al. Isolation of rapidly growing nontuberculous mycobacteria in wounds following combat-related injury. Mil Med. 2016;181(6):530–6. Available from: https://academic.oup.com/milmed/article/181/6/530-536/4158271

    Article  PubMed  Google Scholar 

  34. Zhang X, Liu W, Liu W, Jiang H, Zong W, Zhang G, et al. Cutaneous infections caused by rapidly growing mycobacteria: case reports and review of clinical and laboratory aspects. Acta Derm Venereol. 2015;95(8):985–9. Available from: http://www.medicaljournals.se/acta/content/?doi=10.2340/00015555-2105

    Article  PubMed  CAS  Google Scholar 

  35. Tahara M, Yatera K, Yamasaki K, Orihashi T, Hirosawa M, Ogoshi T, et al. Disseminated Mycobacterium abscessus complex infection manifesting as multiple areas of lymphadenitis and skin abscess in the preclinical stage of acute lymphocytic leukemia. Intern Med. 2016;55(13):1787–91. Available from: https://www.jstage.jst.go.jp/article/internalmedicine/55/13/55_55.6759/_article

    Article  PubMed  Google Scholar 

  36. Wang H, Kim H, Kim S, Kim D, Cho S-N, Lee H. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species. J Microbiol. 2015;53(1):38–46. Available from: http://link.springer.com/10.1007/s12275-015-4495-8

    Article  PubMed  CAS  Google Scholar 

  37. Syrmis MW, Pandey S, Tolson C, Carter R, Congdon J, Sloots T, et al. Identification of Mycobacterium abscessus complex and M. Abscessus subsp. massiliense culture isolates by real-time assays. J Med Microbiol. 2015;64(7):790–4.

    Article  PubMed  CAS  Google Scholar 

  38. Kim K, Hong S, Kim B-J, Kim B-R, Lee S, Kim G-N, et al. Separation of Mycobacterium abscessus into subspecies or genotype level by direct application of peptide nucleic acid multi-probe-real-time PCR method into sputa samples. BMC Infect Dis. 2015;15(1):325. https://doi.org/10.1186/s12879-015-1076-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, García-Martínez ML, Ortega-Torres M, Montiel Quezel-Guerraz N, et al. Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. Biomed Res Int. 2015:1–6. Available from: http://www.hindawi.com/journals/bmri/2015/854078/

  40. Kodana M, Tarumoto N, Kawamura T, Saito T, Ohno H, Maesaki S, et al. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria. J Infect Chemother. 2016;22(1):32–5. https://doi.org/10.1016/j.jiac.2015.09.006.

    Article  PubMed  CAS  Google Scholar 

  41. Luo L, Liu W, Li B, Li M, Huang D, Jing L, et al. Evaluation of matrix-assisted laser desorption ionization−time of flight mass spectrometry for identification of Mycobacterium abscessus subspecies according to whole-genome sequencing. Land GA, editor. J Clin Microbiol. 2016;54(12):2982–9. Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.01151-16

  42. Hatakeyama S, Ohama Y, Okazaki M, Nukui Y, Moriya K. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis. 2017;17(1):197. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2298-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kehrmann J, Wessel S, Murali R, Hampel A, Bange F, Buer J, et al. Principal component analysis of MALDI TOF MS mass spectra separates M. abscessus (sensu stricto) from M. massiliense isolates. BMC Microbiol. 2016;16(1):24. https://doi.org/10.1186/s12866-016-0636-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun Z, Li W, Xu S, Huang H. The discovery, function and development of the variable number tandem repeats in different Mycobacterium species. Crit Rev Microbiol. 2015;19:1–21. https://doi.org/10.3109/1040841X.2015.1022506.

    Article  CAS  Google Scholar 

  45. Yoshida S, Arikawa K, Tsuyuguchi K, Kurashima A, Harada T, Nagai H, et al. Investigation of the population structure of Mycobacterium abscessus complex strains using 17-locus variable number tandem repeat typing and the further distinction of Mycobacterium massiliense hsp65 genotypes. J Med Microbiol. 2015;64(Pt_3):254–61. Available from: http://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000016

    Article  PubMed  CAS  Google Scholar 

  46. Kasperbauer SH, De Groote MA. The treatment of rapidly growing mycobacterial infections. Clin Chest Med. 2015;36(1):67–78. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0272523114001075

    Article  PubMed  Google Scholar 

  47. Novosad SA, Beekmann SE, Polgreen PM, Mackey K, Winthrop KL. Treatment of Mycobacterium abscessus infection. Emerg Infect Dis. 2016;22(3):511–4. Available from: http://wwwnc.cdc.gov/eid/article/22/3/15-0828_article.htm

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Abdalla MY, Switzer BL, Goss CH, Aitken ML, Singh PK, Britigan BE. Gallium compounds exhibit potential as new therapeutic agents against Mycobacterium abscessus. Antimicrob Agents Chemother. 2015;59(8):4826–34. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.00331-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Li YM, Tong XL, Xu HT, Ju Y, Cai M, Wang C. Prevalence and antimicrobial susceptibility of Mycobacterium abscessus in a general hospital, China. Biomed Environ Sci. 2016;29(2):85–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27003165

    PubMed  Google Scholar 

  50. Luo RF, Curry C, Taylor N, Budvytiene I, Banaei N. Rapid Detection of Acquired and Inducible Clarithromycin Resistance in Mycobacterium abscessus Group by a Simple Real-Time PCR Assay. Land GA, editor. J Clin Microbiol. 2015;53(7):2337–9. Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.00132-15

  51. Liu W, Li B, Chu H, Zhang Z, Luo L, Ma W, et al. Rapid detection of mutations in erm (41) and rrl associated with clarithromycin resistance in Mycobacterium abscessus complex by denaturing gradient gel electrophoresis. J Microbiol Methods. 2017;143(507):87–93. https://doi.org/10.1016/j.mimet.2017.10.010.

    Article  PubMed  CAS  Google Scholar 

  52. Mougari F, Bouziane F, Crockett F, Nessar R, Chau F, Veziris N, et al. Selection of resistance to clarithromycin in Mycobacterium abscessus subspecies. Antimicrob Agents Chemother. 2017;61(1):e00943–16. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.00943-16

    Article  PubMed  CAS  Google Scholar 

  53. Brown-Elliott BA, Hanson K, Vasireddy S, Iakhiaeva E, Nash KA, Vasireddy R, et al. Absence of a functional erm gene in isolates of Mycobacterium immunogenum and the Mycobacterium mucogenicum group, based on in vitro clarithromycin susceptibility: table 1. Forbes BA, editor. J Clin Microbiol. 2015;53(3):875–8. Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.02936-14

  54. Jeong SH, Kim S, Huh HJ, Ki C, Lee NY, Kang C, et al. Mycobacteriological characteristics and treatment outcomes in extrapulmonary Mycobacterium abscessus complex infections. Int J Infect Dis. 2017;60:49–56. https://doi.org/10.1016/j.ijid.2017.05.007.

    Article  PubMed  Google Scholar 

  55. Zhang Z, Lu J, Liu M, Wang Y, Zhao Y, Pang Y. In vitro activity of clarithromycin in combination with other antimicrobial agents against Mycobacterium abscessus and Mycobacterium massiliense. Int J Antimicrob Agents. 2017;49(3):383–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0924857917300377

    Article  PubMed  CAS  Google Scholar 

  56. Kim SY, Kim C-K, Bae IK, Jeong SH, Yim J-J, Jung JY, et al. The drug susceptibility profile and inducible resistance to macrolides of Mycobacterium abscessus and Mycobacterium massiliense in Korea. Diagn Microbiol Infect Dis. 2015;81(2):107–11. https://doi.org/10.1016/j.diagmicrobio.2014.10.007.

    Article  PubMed  CAS  Google Scholar 

  57. Christianson S, Grierson W, Kein D, Tyler AD, Wolfe J, Sharma MK. Time-to-detection of inducible macrolide resistance in Mycobacterium abscessus subspecies and its association with the Erm(41) sequevar. Hozbor DF, editor. PLoS One. 2016 4;11(8):e0158723. Available from: http://dx.plos.org/10.1371/journal.pone.0158723

  58. Zhu YC, Mitchell KK, Nazarian EJ, Escuyer VE, Musser KA. Rapid prediction of inducible clarithromycin resistance in Mycobacterium abscessus. Mol Cell Probes. 2015;29(6):514–6. https://doi.org/10.1016/j.mcp.2015.08.007.

    Article  PubMed  CAS  Google Scholar 

  59. dos Santos Carneiro M, de Souza Nunes L, de David SMM, Barth AL. Lack of association between rrl and erm(41) mutations and clarithromycin resistance in Mycobacterium abscessus complex. Mem Inst Oswaldo Cruz. 2017;112(11):775–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762017001100775&lng=en&tlng=en

    Article  Google Scholar 

  60. Maurer FP, Bruderer VL, Castelberg C, Ritter C, Scherbakov D, Bloemberg GV, et al. Aminoglycoside-modifying enzymes determine the innate susceptibility to aminoglycoside antibiotics in rapidly growing mycobacteria. J Antimicrob Chemother. 2015;70(5):1412–9. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dku550

    Article  PubMed  CAS  Google Scholar 

  61. Brown-Elliott BA, Wallace RJ. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. Land GA, editor. J Clin Microbiol. 2017;55(6):1747–54. Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.00274-17

  62. Kaushik A, Gupta C, Fisher S, Story-Roller E, Galanis C, Parrish N, et al. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant Mycobacterium abscessus. Future Microbiol. 2017;12(6):473–80. Available from: http://www.futuremedicine.com/doi/10.2217/fmb-2016-0234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Halloum I, Viljoen A, Khanna V, Craig D, Bouchier C, Brosch R, et al. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384. Antimicrob Agents Chemother. 2017;61(4):e02509–16. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.02509-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kaushik A, Makkar N, Pandey P, Parrish N, Singh U, Lamichhane G. Carbapenems and rifampin exhibit synergy against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother. 2015;59(10):6561–7. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01158-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother. 2017;61(5):e02627–16. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.02627-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Obregón-Henao A, Arnett KA, Henao-Tamayo M, Massoudi L, Creissen E, Andries K, et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother. 2015;59(11):6904–12. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.00459-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Vilchèze C, Leung LW, Bittman R, Jacobs WR Jr. Synthesis and biological activity of alkynoic acids derivatives against mycobacteria. Chem Phys Lipids. 2016;194:125–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009308415300323

    Article  PubMed  CAS  Google Scholar 

  68. Sabin AP, Ferrieri P, Kline S. Mycobacterium abscessus complex infections in children: a review. Curr Infect Dis Rep. 2017;19(11):46. Available from: http://link.springer.com/10.1007/s11908-017-0597-2

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ng SS-Y, Tay Y-K, Koh MJ-A, Thoon K-C, Sng L-H. Pediatric cutaneous nontuberculous Mycobacterium infections in Singapore. Pediatr Dermatol. 2015;32(4):488–94. Available from: http://doi.wiley.com/10.1111/pde.12575

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. Gotuzzo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cutaneous Mycobacterial Diseases of the Skin and Soft Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porudominsky, R., Gotuzzo, E.H. Mycobacterium abscessus Complex Cutaneous Infection. Curr Trop Med Rep 5, 170–178 (2018). https://doi.org/10.1007/s40475-018-0151-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-018-0151-9

Keywords

Navigation