Skip to main content
Log in

Training-Induced Neuroplasticity in Children with Developmental Coordination Disorder

  • Motor Disorders (P Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Developmental coordination disorder (DCD) impacts ones’ abilities to learn motor skills. Emerging evidence suggests that training or intervention can improve motor skills and induce brain changes. We present an overview of current knowledge and highlight the effects of Cognitive Orientation to Occupational Performance (CO-OP) intervention on brain structure in children with DCD.

Recent Findings

The frontal lobe, parietal lobe, cerebellum, basal ganglia, and the corpus callosum have been associated with motor learning difficulties in children with DCD. We found that white matter microstructure and/or volume in the right corona radiata, anterior thalamic radiation, and the corpus callosum improves following CO-OP intervention in children with DCD.

Summary

Training-induced changes in brain structure and function can be seen following intervention in children with DCD. The common theme between these changes is the possibility of improved access to attentional resources to compensate for motor difficulties associated with DCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association, editor. Diagnostic and Statistical Manual of Mental Disorders – 5th edition (DSM-5). Washington, DC: American Psychiatric Association; 2013.

  2. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a review and update. Eur J Paediatr Neurol. 2012;16:573–81.

    PubMed  Google Scholar 

  3. Fong SSM, Lee VYL, Chan NNC, Chan RSH, Chak W, Pang MYC. Motor ability and weight status are determinants of out-of-school activity participation for children with developmental coordination disorder. Res Dev Disabil. 2011;32:2614–23.

    PubMed  Google Scholar 

  4. Izadi-Najafabadi S, Ryan N, Ghafooripoor G, Gill K, Zwicker JG. Participation of children with developmental coordination disorder. Res Dev Disabil. 2019;84:75–84.

    PubMed  Google Scholar 

  5. Jarus T, Lourie-Gelberg Y, Engel-Yeger B, Bart O. Participation patterns of school-aged children with and without DCD. Res Dev Disabil. 2011;32:1323–31.

    PubMed  Google Scholar 

  6. Poulsen AA, Ziviani JM, Cuskelly M, Smith R. Boys with developmental coordination disorder: loneliness and team sports participation. Am J Occup Ther. 2007;61:451–62.

    PubMed  Google Scholar 

  7. Karras HC, Morin DN, Gill K, Izadi-Najafabadi S, Zwicker JG. Health-related quality of life of children with developmental coordination disorder. Res Dev Disabil. 2019;84:85–95.

    PubMed  Google Scholar 

  8. Zwicker JG, Harris S, Klassen A. Quality of life domains affected in children with developmental coordination disorder: a systematic review. Child Care Health Dev. 2013;39:562–80.

    PubMed  CAS  Google Scholar 

  9. Kirby A, Sugden D, Purcell C. Diagnosing developmental coordination disorders. Arch Dis Child. 2014;99:292–6.

    PubMed  Google Scholar 

  10. Cousins M, Smyth MM. Developmental coordination impairments in adulthood. Hum Mov Sci. 2003;22:433–59.

    PubMed  Google Scholar 

  11. Losse A, Henderson SE, Elliman D, Hall D, Knight E, Jongmans M. Clumsiness in children-do they grow out of it? A 10-year follow-up study. Dev Med Child Neurol. 1991;33:55–68.

    PubMed  CAS  Google Scholar 

  12. Tal-Saban M, Zarka S, Grotto I, Ornoy A, Parush S. The functional profile of young adults with suspected developmental coordination disorder (DCD). Res Dev Disabil. 2012;33:2193–202.

    PubMed  Google Scholar 

  13. • Biotteau M, Chaix Y, Blais M, Tallet J, Péran P, Albaret J. Neural signature of DCD: a critical review of MRI neuroimaging studies. Front Neurol. 2016;7. This relatively recent review article summarizes the latest evidence and describes the neural correlates thought to underlie DCD.

  14. Zwicker JG, Missiuna C, Boyd LA. Neural correlates of developmental coordination disorder: a review of hypotheses. J Child Neurol. 2009;24:1273–81.

    PubMed  Google Scholar 

  15. Bo J, Lee C. Motor skill learning in children with developmental coordination disorder. Res Dev Disabil. 2013;34:2047–55.

    PubMed  Google Scholar 

  16. • Biotteau M, Péran P, Vayssière N, Tallet J, Albaret J, Chaix Y. Neural changes associated to procedural learning and automatization process in developmental coordination disorder and/or developmental dyslexia. Eur J Paediatr Neurol. 2017;21:286–99 This article highlights neuroplastic change associated with early learning and automaticity of procedural learning in children with DCD, dyslexia, or co-occurring DCD and dsylexia; results comfirm previous studies that show children with DCD activate a different network to learn motor skills.

    PubMed  Google Scholar 

  17. McLeod KR, Langevin LM, Dewey D, Goodyear BG. Atypical within-and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. NeuroImage: Clinical. 2016;12:157–64.

    Google Scholar 

  18. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126:e678–86.

    PubMed  Google Scholar 

  19. Debrabant J, Vingerhoets G, Van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. J Pediatr. 2016;169:21–27. e2.

    PubMed  Google Scholar 

  20. Kashuk S, Williams J, Thorpe G, Wilson P, Egan G. Diminished motor imagery capability in adults with motor impairment: an fMRI mental rotation study. Behav Brain Res. 2017;334:86–96.

    PubMed  CAS  Google Scholar 

  21. Fuelscher I, Caeyenberghs K, Enticott PG, Williams J, Lum J, Hyde C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: an ALE meta-analysis. Neurosci Biobehav Rev. 2018;86:77–84.

    PubMed  CAS  Google Scholar 

  22. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29:145–52.

    PubMed  Google Scholar 

  23. Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Res Dev Disabil. 2013;34:1478–87.

    PubMed  Google Scholar 

  24. Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9:405–10.

    PubMed  Google Scholar 

  25. Caeyenberghs K, Taymans T, Wilson PH, Vanderstraeten G, Hosseini H, Waelvelde H. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Dev Sci. 2016;19:599–612.

    PubMed  Google Scholar 

  26. Kashiwagi M, Iwaki S, Narumi Y, Tamai H, Suzuki S. Parietal dysfunction in developmental coordination disorder: a functional MRI study. Neuroreport. 2009;20:1319–24.

    PubMed  CAS  Google Scholar 

  27. Langevin LM, MacMaster FP, Dewey D. Distinct patterns of cortical thinning in concurrent motor and attention disorders. Dev Med Child Neurol. 2015;57:257–64.

    PubMed  Google Scholar 

  28. Langevin LM, Macmaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164:1157–1164.e1.

    PubMed  Google Scholar 

  29. Querne L, Berquin P, Vernier-Hauvette M, Fall S, Deltour L, Meyer M, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.

    PubMed  CAS  Google Scholar 

  30. Ray BM. Behavioral and functional brain correlates of developmental coordination disorder: a case-control study [dissertation]: University of South Carolina; 2007.

  31. Yeh C, Huang W, Lo M, Chang C, Ma K, Shyu J. The rCBF brain mapping in adolescent ADHD comorbid developmental coordination disorder and its changes after MPH challenging. Eur J Paediatr Neurol. 2012;16:613–8.

    PubMed  Google Scholar 

  32. Brown-Lum M. Characterizing the neural correlates of children with developmental coordination disorder using diffusion tensor imaging. [thesis]. University of British Columbia; 2017.

  33. Reynolds JE, Licari MK, Reid SL, Elliott C, Winsor AM, Bynevelt M, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder: a voxel-based morphometry study. Int J Dev Neurosci. 2017;58:59–64.

    PubMed  Google Scholar 

  34. Thornton S, Bray S, Langevin LM, Dewey D. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder. Hum Mov Sci. 2018;59:134–42.

    PubMed  Google Scholar 

  35. McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. NeuroImage: Clinical. 2014;4:566–75.

    Google Scholar 

  36. Reynolds JE, Billington J, Kerrigan S, Williams J, Elliott C, Winsor AM, et al. Mirror neuron system activation in children with developmental coordination disorder: a replication functional MRI study. Res Dev Disabil. 2017.

  37. Reynolds JE, Licari MK, Reid SL, Elliott C, Winsor AM, Bynevelt M, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder: a voxel-based morphometry study. Int J Dev Neurosci. 2017;58:59–64.

    PubMed  Google Scholar 

  38. Blais M, Amarantini D, Albaret J, Chaix Y, Tallet J. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder. Dev Sci. 2018;21:e12563.

    PubMed  Google Scholar 

  39. Hyde C, Fuelscher I, Williams J, Lum JAG, He J, Barhoun P, et al. Corticospinal excitability during motor imagery is reduced in young adults with developmental coordination disorder. Res Dev Disabil. 2018;72:214–24.

    PubMed  CAS  Google Scholar 

  40. Reynolds JE, Licari MK, Billington J, Chen Y, Aziz-Zadeh L, Werner J, et al. Mirror neuron activation in children with developmental coordination disorder: a functional MRI study. Int J Dev Neurosci. 2015;47:309–19.

    PubMed  Google Scholar 

  41. Caçola P, Getchell N, Srinivasan D, Alexandrakis G, Liu H. Cortical activity in fine-motor tasks in children with developmental coordination disorder: a preliminary fNIRS study. Int J Dev Neurosci. 2018;65:83–90.

    PubMed  Google Scholar 

  42. Pangelinan MM, Hatfield BD, Clark JE. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. J Neurophysiol. 2013;109:3041–50.

    PubMed  PubMed Central  Google Scholar 

  43. Koch JKL, Miguel H, Smiley-Oyen AL. Prefrontal activation during Stroop and Wisconsin card sort tasks in children with developmental coordination disorder: a NIRS study. Exp Brain Res. 2018;236:3053–64.

    PubMed  Google Scholar 

  44. Pascual-Leone A, Wassermann EM, Grafman J, Hallett M. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res. 1996;107:479–85.

    PubMed  CAS  Google Scholar 

  45. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry. 2007;49:132–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Rinat S. Functional connectivity in children with developmental coordination disorder: an exploratory study [thesis]: University of British Columbia; 2019.

  47. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2013;137:12–32.

    PubMed  PubMed Central  Google Scholar 

  48. Lord AR, Li M, Demenescu LR, van den Meer J, Borchardt V, Krause AL, et al. Richness in functional connectivity depends on the neuronal integrity within the posterior cingulate cortex. Front Neurol. 2017;11:184.

    Google Scholar 

  49. Leech R, Braga R, Sharp DJ. Echoes of the brain within the posterior cingulate cortex. J Neurosci. 2012;32:215–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Blakemore S, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport. 2001;12:1879–84.

    PubMed  CAS  Google Scholar 

  51. Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern. 1992;68:95–103.

    PubMed  CAS  Google Scholar 

  52. Blakemore S, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.

    PubMed  Google Scholar 

  53. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185:359–81.

    PubMed  PubMed Central  Google Scholar 

  54. Merel J, Botvinick M, Wayne G. Hierarchical motor control in mammals and machines. Nat Commun. 2019;10:1–12.

    CAS  Google Scholar 

  55. Jover M, Schmitz C, Centelles L, Chabrol B, Assaiante C. Anticipatory postural adjustments in a bimanual load-lifting task in children with developmental coordination disorder. Dev Med Child Neurol. 2010;52:850–5.

    PubMed  Google Scholar 

  56. Williams J, Anderson V, Reddihough DS, Reid SM, Vijayakumar N, Wilson PH. A comparison of motor imagery performance in children with spastic hemiplegia and developmental coordination disorder. J Clin Exp Neuropsychol. 2011;33:273–82.

    PubMed  Google Scholar 

  57. Williams J, Omizzolo C, Galea MP, Vance A. Motor imagery skills of children with attention deficit hyperactivity disorder and developmental coordination disorder. Hum Mov Sci. 2013;32:121–35.

    PubMed  Google Scholar 

  58. Williams J, Thomas PR, Maruff P, Wilson PH. The link between motor impairment level and motor imagery ability in children with developmental coordination disorder. Hum Mov Sci. 2008;27:270–85.

    PubMed  Google Scholar 

  59. Wilson PH, Maruff P, Ives S, Currie J. Abnormalities of motor and praxis imagery in children with DCD. Hum Mov Sci. 2001;20:135–59.

    PubMed  CAS  Google Scholar 

  60. Katschmarsky S, Cairney S, Maruff P, Wilson PH, Currie J. The ability to execute saccades on the basis of efference copy: impairments in double-step saccade performance in children with developmental co-ordination disorder. Exp Brain Res. 2001;136:73–8.

    PubMed  CAS  Google Scholar 

  61. Chen W, Wilson PH, Wu SK. Deficits in the covert orienting of attention in children with developmental coordination disorder: does severity of DCD count? Res Dev Disabil. 2012;33:1516–22.

    PubMed  Google Scholar 

  62. Biancotto M, Skabar A, Bulgheroni M, Carrozzi M, Zoia S. Neuromotor deficits in developmental coordination disorder: evidence from a reach-to-grasp task. Res Dev Disabil. 2011;32:1293–300.

    PubMed  Google Scholar 

  63. Smyth MM, Anderson HI, Churchill A. Visual information and the control of reaching in children: a comparison between children with and without developmental coordination disorder. J Mot Behav. 2001;33:306–20.

    PubMed  CAS  Google Scholar 

  64. Moucha R, Kilgard MP. Cortical plasticity and rehabilitation. Prog Brain Res. 2006;157:111–389.

    PubMed  Google Scholar 

  65. • Izadi-Najafabadi S, Rinat S, Zwicker JG. Rehabilitation-induced brain changes detected through magnetic resonance imaging in children with neurodevelopmental disorders: a systematic review. Int J Dev Neurosci. 2019;73:66–82 This systematic review highlights that neuroplastic changes associated with rehabilitation of children with neurodevelopmental disorders can be captured on MRI, but that structural changes may require greater intensity or duration to detect neuroplastic change.

    PubMed  Google Scholar 

  66. Tsai C, Chang Y, Chen F, Hung T, Pan C, Wang C. Effects of cardiorespiratory fitness enhancement on deficits in visuospatial working memory in children with developmental coordination disorder: a cognitive electrophysiological study. Arch Clin Neuropsychol. 2013;29:173–85.

    PubMed  Google Scholar 

  67. Tsai C, Wang C, Tseng Y. Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder. Brain Cogn. 2012;79:12–22.

    PubMed  Google Scholar 

  68. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. Neuroimage. 2005;28:39–48.

    PubMed  Google Scholar 

  69. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.

    PubMed  CAS  Google Scholar 

  70. Evarts E, Thach W. Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.

    PubMed  CAS  Google Scholar 

  71. Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci. 2010;22:1917–30.

    PubMed  Google Scholar 

  72. Seidler RD, Bo J, Anguera JA. Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav. 2012;44:445–53.

    PubMed  PubMed Central  Google Scholar 

  73. Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol. 2005;15:626–31.

    PubMed  CAS  Google Scholar 

  74. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72:443–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Hikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Curr Opin Neurobiol. 2002;12:217–22.

    PubMed  CAS  Google Scholar 

  76. Doyon J, Ungerleider LG, Squire L, Schacter D. Functional anatomy of motor skill learning. Neuropsychol Memory. 2002;3:225–38.

    Google Scholar 

  77. Sun FT, Miller LM, Rao AA, D'Esposito M. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex. 2006;17:1227–34.

    PubMed  Google Scholar 

  78. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry. 1999;156:891–6.

    PubMed  CAS  Google Scholar 

  79. Suskauer SJ, Simmonds DJ, Caffo BS, Denckla MB, Pekar JJ, Mostofsky SH. fMRI of intrasubject variability in ADHD: anomalous premotor activity with prefrontal compensation. J Am Acad Child Adolesc Psychiatry. 2008;47:1141–50.

    PubMed  PubMed Central  Google Scholar 

  80. Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller R. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25:916–25.

    PubMed  PubMed Central  Google Scholar 

  81. Müller R, Cauich C, Rubio MA, Mizuno A, Courchesne E. Abnormal activity patterns in premotor cortex during sequence learning in autistic patients. Biol Psychiatry. 2004;56:323–32.

    PubMed  Google Scholar 

  82. Patel R, Spreng RN, Turner GR. Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabil Neural Repair. 2013;27:187–99.

    PubMed  Google Scholar 

  83. Sharer E, Crocetti D, Muschelli J, Barber AD, Nebel MB, Caffo BS, et al. Neural correlates of visuomotor learning in autism. J Child Neurol. 2015;30:1877–86.

    PubMed  PubMed Central  Google Scholar 

  84. Mostofsky SM, Powell SK, Simmonds, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132.

  85. Smits-Engelsman B, Blank R, Van Der Kaay A, et al. Efficacy of interventions to improve motor performance in children with developmental coordination disorder: a combined systematic review and meta-analysis. Dev Med Child Neurol. 2013;55:229–37.

    PubMed  Google Scholar 

  86. Smits-Engelsman B, Vincon S, Blank R, Quadrado VH, Polatajko H, Wilson PH. Evaluating the evidence for motor-based interventions in developmental coordination disorder: a systematic review and meta-analysis. Res Dev Disabil. 2018;74:72–102.

    PubMed  Google Scholar 

  87. •• Blank R, Barnett AL, Cairney J, Green D, Kirby A, Polatajko H, et al. International clinical practice recommendations on the definition, diagnosis, intervention, and psychosocial aspects of developmental coordination disorder. Dev Med Child Neurol. 2019;61:241–85 This comprehensive article summarizes the current state of evidence based on international consensus to inform clinical practice recommendations for DCD.

    Google Scholar 

  88. • Thornton A, Licari M, Reid S, Armstrong J, Fallows R, Elliott C. Cognitive Orientation to (daily) Occupational Performance intervention leads to improvements in impairments, activity and participation in children with developmental coordination disorder. Disabil Rehabil. 2016;38:979–86 This study examined the effectiveness of CO-OP intervention in improving outcomes of children with DCD in the primary domains of the International Classification of Functioning, Disability, and Health.

    PubMed  Google Scholar 

  89. Scammell EM, Bates SV, Houldin A, Polatajko HJ. The Cognitive Orientation to daily Occupational Performance (CO-OP): a scoping review. Can J Occup Ther. 2016;83:216–25.

    PubMed  Google Scholar 

  90. Polatajko HJ, Mandich AD, Miller LT, Macnab JJ. Cognitive Orientation to daily Occupational Performance (CO-OP): part II—the evidence. Phys Occup Ther Pediatr. 2001;20:83–106.

    PubMed  CAS  Google Scholar 

  91. Ward A, Rodger S. The application of Cognitive Orientation to daily Occupational Performance (CO-OP) with children 5–7 years with developmental coordination disorder. Br J Occup Ther. 2004;67:256–64.

    Google Scholar 

  92. Schwartz S, Northrup S, Izadi-Najafabadi S, Zwicker JG. Strategy use and outcomes of CO-OP for children with developmental coordination disorder [submitted]. Can J Occup Ther. 2019.

  93. Zwicker JG, Rehal H, Sodhi S, Karkling M, Paul A, Hilliard M, et al. Effectiveness of a summer camp intervention for children with developmental coordination disorder. Phys Occup Ther Pediatr. 2015;35:163–77.

    PubMed  Google Scholar 

  94. • Anderson L, Wilson J, Williams G. Cognitive Orientation to daily Occupational Performance (CO-OP) as group therapy for children living with motor coordination difficulties: an integrated literature review. Aust Occup Ther J. 2017;64:170–84 This recent review highlights the effectiveness of CO-OP intervention for children with DCD in group format on both physical and psychosocial outcomes.

    PubMed  Google Scholar 

  95. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55.

    PubMed  Google Scholar 

  96. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–54.

    PubMed  Google Scholar 

  97. Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2:254–65.

    PubMed  PubMed Central  Google Scholar 

  98. Winkler AM, Webster MA, Brooks JC, Tracey I, Smith SM, Nichols TE. Non-parametric combination and related permutation tests for neuroimaging. Hum Brain Mapp. 2016;37:1486–511.

    PubMed  PubMed Central  Google Scholar 

  99. Stave EA, De Bellis MD, Hooper SR, Woolley DP, Chang SK, Chen SD. Dimensions of attention associated with the microstructure of corona radiata white matter. J Child Neurol. 2017;32:458–66.

    PubMed  PubMed Central  Google Scholar 

  100. Jang SH. A review of corticospinal tract location at corona radiata and posterior limb of the internal capsule in human brain. NeuroRehabilitation. 2009;24:279–83.

    PubMed  Google Scholar 

  101. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218.

    PubMed  CAS  Google Scholar 

  102. Hong JH, Son SM, Jang SH. Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study. Neuroimage. 2010;51:952–5.

    PubMed  Google Scholar 

  103. Holodny AI, Watts R, Korneinko VN, Pronin IN, Zhukovskiy ME, Gor DM, et al. Diffusion tensor tractography of the motor white matter tracts in man: current controversies and future directions. Ann N Y Acad Sci. 2005;1064:88–97.

    PubMed  Google Scholar 

  104. Bhanpuri NH. Cerebellar internal models contribute to action and perception: The Johns Hopkins University; 2012.

  105. Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—a systematic review. Neurosci Biobehav Rev. 2014;47:225–44.

    PubMed  Google Scholar 

  106. Takeuchi N, Oouchida Y, Izumi S. Motor control and neural plasticity through interhemispheric interactions. Neural Plast. 2012;2012:823285.

    PubMed  PubMed Central  Google Scholar 

  107. Sigmundsson H. Perceptual deficits in clumsy children: inter- and intra-modal matching approach—a window into clumsy behavior. Neural Plast. 2003;10:27–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Knyazeva MG. Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural Plast. 2013;2013:639430.

    PubMed  PubMed Central  Google Scholar 

  109. Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, et al. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage. 2005;26:195–205.

    PubMed  Google Scholar 

  110. Banich MT. The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn. 1998;36:128–57.

    PubMed  CAS  Google Scholar 

  111. Niida R, Yamagata B, Niida A, Uechi A, Matsuda H, Mimura M. Aberrant anterior thalamic radiation structure in bipolar disorder: a diffusion tensor tractography study. Front Psychiatry. 2018;9:522.

    PubMed  PubMed Central  Google Scholar 

  112. Jia Z, Wang Y, Huang X, Kuang W, Wu Q, Lui S, et al. Impaired frontothalamic circuitry in suicidal patients with depression revealed by diffusion tensor imaging at 3.0 T. J Psychiatry Neurosci. 2014;39:170–7.

    PubMed  PubMed Central  Google Scholar 

  113. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatr Clin Neurosci. 2012;24:223–36.

    Google Scholar 

  114. Peters LH, Maathuis CG, Hadders-Algra M. Neural correlates of developmental coordination disorder. Dev Med Child Neurol. 2013;55:59–64.

    PubMed  Google Scholar 

  115. Brown-Lum M, Zwicker JG. Brain imaging increases our understanding of developmental coordination disorder: a review of literature and future directions. Curr Dev Disord Rep. 2015;2:131–40.

    Google Scholar 

  116. Haaland KY. Left hemisphere dominance for movement. Clin Neuropsychol. 2006;20:609–22.

    PubMed  Google Scholar 

  117. Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurol. 2006;7:160.

    CAS  Google Scholar 

  118. Buklina S. The corpus callosum, interhemisphere interactions, and the function of the right hemisphere of the brain. Neurosci Behav Physiol. 2005;35:473–80.

    PubMed  CAS  Google Scholar 

  119. •• Yu JJ, Burnett AF, Sit CH. Motor skill interventions in children with developmental coordination disorder: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99:2076–99 This recent manuscript provides a summary of current evidence for effective interventions for DCD and indicates that dose and frequency moderate training effects.

    PubMed  Google Scholar 

  120. Brown-Lum M, Izadi-Najafabadi S, Zwicker JG. White matter differences in children with developmental coordination disorder suggests altered axonal development [submitted]. J Am Med Assoc Open. 2019.

  121. Edwards J, Berube M, Erlandson K, Haug S, Johnstone H, Meagher M, et al. Developmental coordination disorder in school-aged children born very preterm and/or at very low birth weight: a systematic review. J Dev Behav Pediatr. 2011;32:678–87.

    PubMed  Google Scholar 

  122. de Kieviet JF, Zoetebier L, Van Elburg RM, Vermeulen RJ, Oosterlaan J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol. 2012;54:313–23.

    PubMed  Google Scholar 

  123. Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M. Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes. Dev Neuropsychol. 2011;36:96–117.

    PubMed  Google Scholar 

  124. Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L, Murray RM. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain. 2004;127:2080–9.

    PubMed  Google Scholar 

  125. Rademaker K, Lam J, Van Haastert I, Uiterwaal C, Lieftink A, Groenendaal F, et al. Larger corpus callosum size with better motor performance in prematurely born children. Semin Perinatol; Elsevier; 2004.

  126. Narberhaus A, Segarra D, Caldú X, Giménez M, Pueyo R, Botet F, et al. Corpus callosum and prefrontal functions in adolescents with history of very preterm birth. Neuropsychologia. 2008;46:111–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill G. Zwicker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does include a human study. The study was approved by the University of British Columbia/Children’s and Women’s Hospitals Clinical Research Ethics Board. Parents provided written informed consent and children assented to participate in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Motor Disorders

Electronic Supplementary Material

ESM 1

(DOCX 92.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi-Najafabadi, S., Gill, K.K. & Zwicker, J.G. Training-Induced Neuroplasticity in Children with Developmental Coordination Disorder. Curr Dev Disord Rep 7, 48–58 (2020). https://doi.org/10.1007/s40474-020-00191-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-020-00191-0

Keywords

Navigation