Skip to main content

Advertisement

Log in

The Neurocognitive Effects of Cannabis Across the Lifespan

  • Addictions (M Potenza and E DeVito, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review examines the neurocognitive effects of cannabis and relevant developmental factors across adolescence (age 13–21), adulthood (21–65), and older adulthood (65 +).

Recent Findings

Cannabis use is robustly associated with poorer neurocognitive functioning; however, studies that carefully control for confounds have often not found any evidence for impairment. Notably, the endocannabinoid system may underly how cannabis use affects neurocognitive functions, including heightened vulnerability during adolescence. In contrast, the endocannabinoid system may underlie protective neurocognitive effects of cannabis in older adults. Notably, older adults have reported sharp increases in recent cannabis use.

Summary

As legalization increases the accessibility, variety, and potency of cannabis, strong empirical evidence is needed to understand its neurocognitive effects across the lifespan. In particular, rigorous study designs are needed to investigate the neurocognitive effects of cannabis, including among vulnerable populations (adolescents, older adults) and mediating (e.g., endocannabinoid system) and moderating factors (e.g., alcohol use).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Van Green T: Americans Overwhelmingly say marijuana should be legal for recreational or medical use. https://www.pewresearch.org/facttank/2021/04/16/americans-overwhelmingly-say-marijuana-should-be-legal-for-recreational-ormedical-use/ (2021). Accessed 2021/06/01 2021.

  2. Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the adolescent brain at greater vulnerability to the effects of cannabis? A narrative review of the evidence. Frontiers in Psychiatry. 2020;11. doi: https://doi.org/10.3389/fpsyt.2020.00859.

  3. • Han BH, Palamar JJ. Trends in cannabis use among older adults in the United States, 2015–2018. JAMA Intern Med. 2020;180(4):609–11. https://doi.org/10.1001/jamainternmed.2019.7517 (A brief article highlighting increasing cannabis use among older adults.).

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Scott JC, Slomiak ST, Jones JD, Rosen AF, Moore TM, Gur RC. Association of cannabis with cognitive functioning in adolescents and young adults: a systematic review and meta-analysis. JAMA Psychiat. 2018;75(6):585–95 (A comprehensive meta-analysis, providing strong evidence that cannabis use is associated with poorer cognitive outcomes but that these effects may diminish within three days after last use.).

    Article  Google Scholar 

  5. • Power E, Sabherwal S, Healy C, O’Neill A, Cotter D, Cannon M. Intelligence quotient decline following frequent or dependent cannabis use in youth: a systematic review and meta-analysis of longitudinal studies. Psychological Medicine. 2021:1–7. A comprehensive meta-analysis, providing strong evidence that cannabis use is associated with poorer cognitive outcomes but that these effects may diminish within three days after last use.

  6. Gonzalez R, Pacheco-Colón I, Duperrouzel JC, Hawes SW. Does cannabis use cause declines in neuropsychological functioning? A review of longitudinal studies. Journal of the International Neuropsychological Society: JINS. 2017;23(9–10):893.

    Article  PubMed  Google Scholar 

  7. Harkany T, Guzmán M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci. 2007;28(2):83–92. https://doi.org/10.1016/j.tips.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  8. Lu HC, Mackie K. Review of the endocannabinoid system. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020. https://doi.org/10.1016/j.bpsc.2020.07.016.

    Article  Google Scholar 

  9. Harkany T, Mackie K, Doherty P. Wiring and firing neuronal networks: endocannabinoids take center stage. Current Opinions in Neurobiology. 2008;18(3):338–45. https://doi.org/10.1016/j.conb.2008.08.007.

    Article  CAS  Google Scholar 

  10. Harkany T, Guzman M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci. 2007;28(2):83–92. https://doi.org/10.1016/j.tips.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  11. Wu CS, Jew CP, Lu HC. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. Future Neurol. 2011;6(4):459–80. https://doi.org/10.2217/fnl.11.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Ruiz J, Berrendero F, Hernandez ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci. 2000;23(1):14–20. https://doi.org/10.1016/s0166-2236(99)01491-5.

    Article  CAS  PubMed  Google Scholar 

  13. Chye Y, Christensen E, Yücel M. Cannabis use in adolescence: a review of neuroimaging findings. J Dual Diagn. 2020;16(1):83–105. https://doi.org/10.1080/15504263.2019.1636171.

    Article  PubMed  Google Scholar 

  14. Schneider M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol. 2008;13(2):253–63. https://doi.org/10.1111/j.1369-1600.2008.00110.x.

    Article  PubMed  Google Scholar 

  15. Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M, et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol of Disease. 2015;73:60–9. https://doi.org/10.1016/j.nbd.2014.09.015.

    Article  CAS  Google Scholar 

  16. Fernández-Ruiz J, Berrendero F, Hernández ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci. 2000;23(1):14–20. https://doi.org/10.1016/s0166-2236(99)01491-5.

    Article  PubMed  Google Scholar 

  17. Lubman DI, Cheetham A, Yucel M. Cannabis and adolescent brain development. Pharmacol Ther. 2015;148:1–16. https://doi.org/10.1016/j.pharmthera.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

  18. Meruelo AD, Castro N, Cota CI, Tapert SF. Cannabis and alcohol use, and the developing brain. Behav Brain Res. 2017;325(Pt A):44–50. https://doi.org/10.1016/j.bbr.2017.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacobus J, Castro N, Squeglia LM, Meloy MJ, Brumback T, Huestis MA, et al. Adolescent cortical thickness pre- and post marijuana and alcohol initiation. Neurotoxicol Teratol. 2016;57:20–9. https://doi.org/10.1016/j.ntt.2016.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacobus J, Squeglia LM, Infante MA, Castro N, Brumback T, Meruelo AD, et al. Neuropsychological performance in adolescent marijuana users with co-occurring alcohol use: a three-year longitudinal study. Neuropsychology. 2015;29(6):829–43. https://doi.org/10.1037/neu0000203.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jacobus J, McQueeny T, Bava S, Schweinsburg BC, Frank LR, Yang TT, et al. White matter integrity in adolescents with histories of marijuana use and binge drinking. Neurotoxicol Teratol. 2009;31(6):349–55. https://doi.org/10.1016/j.ntt.2009.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tapert SF, Schweinsburg AD, Drummond SP, Paulus MP, Brown SA, Yang TT, et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology. 2007;194(2):173–83. https://doi.org/10.1007/s00213-007-0823-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medina KL, Hanson KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Neuropsychological functioning in adolescent marijuana users: subtle deficits detectable after a month of abstinence. J Int Neuropsychol Soc. 2007;13(5):807–20. https://doi.org/10.1017/s1355617707071032.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blest-Hopley G, Giampietro V, Bhattacharyya S. Residual effects of cannabis use in adolescent and adult brains: a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2018;88:26–41. https://doi.org/10.1016/j.neubiorev.2018.03.008.

    Article  PubMed  Google Scholar 

  25. Blest-Hopley G, Giampietro V, Bhattacharyya S. Regular cannabis use is associated with altered activation of central executive and default mode networks even after prolonged abstinence in adolescent users: results from a complementary meta-analysis. Neurosci Biobehav Rev. 2019;96:45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Duperrouzel JC, Granja K, Pacheco-Colón I, Gonzalez R. Adverse effects of cannabis use on neurocognitive functioning: a systematic review of meta-analytic studies. J Dual Diagn. 2020;16(1):43–57 (A review of meta-anlaytic studies, including three specifically on neuroimaging, of the neurocognitive effects of cannabis. Key findings suggest that cannabis users and non-users differ in brain functioning even after abstinence, but it is unclear whether these differences predate use rather than being a consequence of use.).

    Article  PubMed  Google Scholar 

  27. Yanes JA, Riedel MC, Ray KL, Kirkland AE, Bird RT, Boeving ER, et al. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. J Psychopharmacol. 2018;32(3):283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Dow-Edwards D, Keller E, Hurd YL. Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience. 2003;118(3):681–94. https://doi.org/10.1016/s0306-4522(03)00020-4.

    Article  CAS  PubMed  Google Scholar 

  29. Antonelli T, Tomasini MC, Tattoli M, Cassano T, Tanganelli S, Finetti S, et al. Prenatal exposure to the CB1 receptor agonist WIN 55,212–2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring. Cereb Cortex. 2005;15(12):2013–20. https://doi.org/10.1093/cercor/bhi076.

    Article  PubMed  Google Scholar 

  30. Mereu G, Fa M, Ferraro L, Cagiano R, Antonelli T, Tattoli M, et al. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc Natl Acad Sci. 2003;100(8):4915–20. https://doi.org/10.1073/pnas.0537849100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hillard CJ. Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology. 2018;43(1):155–72. https://doi.org/10.1038/npp.2017.130.

    Article  CAS  PubMed  Google Scholar 

  32. Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev. 2013;23(2):117–37. https://doi.org/10.1007/s11065-012-9222-1.

    Article  PubMed  Google Scholar 

  33. Bossong MG, Jager G, Bhattacharyya S, Allen P. Acute and non-acute effects of cannabis on human memory function: a critical review of neuroimaging studies. Curr Pharm Des. 2014;20(13):2114–25. https://doi.org/10.2174/13816128113199990436.

    Article  CAS  PubMed  Google Scholar 

  34. Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N. Acute and chronic effects of cannabinoids on human aognition: a systematic review. Biol Psychiat. 2016;79(7):557–67. https://doi.org/10.1016/j.biopsych.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  35. Lundqvist T. Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol Biochem Behav. 2005;81(2):319–30. https://doi.org/10.1016/j.pbb.2005.02.017.

    Article  CAS  PubMed  Google Scholar 

  36. Ranganathan M, D’Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology. 2006;188(4):425–44. https://doi.org/10.1007/s00213-006-0508-y.

    Article  CAS  PubMed  Google Scholar 

  37. Schoeler T, Bhattacharyya S. The effect of cannabis use on memory function: an update. Substance Abuse Rehabilitation. 2013;4:11–27. https://doi.org/10.2147/sar.S25869.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramaekers JG, Kauert G, Theunissen EL, Toennes SW, Moeller MR. Neurocognitive performance during acute THC intoxication in heavy and occasional cannabis users. J Psychopharmacol. 2009;23(3):266–77. https://doi.org/10.1177/0269881108092393.

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein A, Brickner O, Lerman H, Greemland M, Bloch M, Lester H, et al. A study investigating the acute dose-response effects of 13 mg and 17 mg Delta 9-tetrahydrocannabinol on cognitive-motor skills, subjective and autonomic measures in regular users of marijuana. J Psychopharmacol. 2008;22(4):441–51. https://doi.org/10.1177/0269881108088194.

    Article  CAS  PubMed  Google Scholar 

  40. • Bidwell LC, Ellingson JM, Karoly HC, YorkWilliams SL, Hitchcock LN, Tracy BL, et al. Association of naturalistic administration of cannabis flower and concentrates with intoxication and impairment. JAMA Psychiat. 2020;77(8):787–96. https://doi.org/10.1001/jamapsychiatry.2020.0927 (A novel approach to studying legal-market products, including high-potency concentrates. Whereas concentrate users had higher acute THC levels than flower users, they had generally similar levels of cognitive impairment possibly due to tolerance or other factors.).

    Article  Google Scholar 

  41. Hayatbakhsh R, Williams GM, Bor W, Najman JM. Early childhood predictors of age of initiation to use of cannabis: a birth prospective study. Drug Alcohol Rev. 2013;32(3):232–40. https://doi.org/10.1111/j.1465-3362.2012.00520.x.

    Article  PubMed  Google Scholar 

  42. Rogeberg O. Correlations between cannabis use and IQ change in the Dunedin cohort are consistent with confounding from socioeconomic status. Proc Natl Acad Sci. 2013;110(11):4251–4. https://doi.org/10.1073/pnas.1215678110.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gillespie NA, Neale MC, Jacobson K, Kendler KS. Modeling the genetic and environmental association between peer group deviance and cannabis use in male twins. Addiction. 2009;104(3):420–9. https://doi.org/10.1111/j.1360-0443.2008.02457.x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci. 2012;109(40):E2657–64. https://doi.org/10.1073/pnas.1206820109.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ross JM, Ellingson JM, Rhee SH, Hewitt JK, Corley RP, Lessem JM, et al. Investigating the causal effect of cannabis use on cognitive function with a quasi-experimental co-twin design. Drug and Alcohol Dependence. 2020;206:107712.

  46. Ellingson JM, Ross JM, Winiger E, Stallings MC, Corley RP, Friedman NP, et al. Familial factors may not explain the effect of moderate-to-heavy cannabis use on cognitive functioning in adolescents: a sibling-comparison study. Addiction. 2021;116(4):833–44. https://doi.org/10.1111/add.15207.

    Article  PubMed  Google Scholar 

  47. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713. https://doi.org/10.1161/STR.0b013e3182299496.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mathew RJ, Wilson WH. Acute changes in cerebral blood flow after smoking marijuana. Life Sci. 1993;52(8):757–67. https://doi.org/10.1016/0024-3205(93)90239-y.

    Article  CAS  PubMed  Google Scholar 

  49. Mathew RJ, Wilson WH, Coleman RE, Turkington TG, DeGrado TR. Marijuana intoxication and brain activation in marijuana smokers. Life Sci. 1997;60(23):2075–89. https://doi.org/10.1016/s0024-3205(97)00195-1.

    Article  CAS  PubMed  Google Scholar 

  50. Mathew RJ, Wilson WH, Turkington TG, Hawk TC, Coleman RE, DeGrado TR, et al. Time course of tetrahydrocannabinol-induced changes in regional cerebral blood flow measured with positron emission tomography. Psychiatry Res. 2002;116(3):173–85. https://doi.org/10.1016/s0925-4927(02)00069-0.

    Article  CAS  PubMed  Google Scholar 

  51. O’Leary DS, Block RI, Koeppel JA, Schultz SK, Magnotta VA, Ponto LB, et al. Effects of smoking marijuana on focal attention and brain blood flow. Hum Psychopharmacol Clin Exp. 2007;22(3):135–48. https://doi.org/10.1002/hup.832.

    Article  Google Scholar 

  52. •• Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, et al. The neuropsychopharmacology of cannabis: a review of human imaging studies. Pharmacol Ther. 2019;195:132–61. https://doi.org/10.1016/j.pharmthera.2018.10.006 (A recent review that discusses the mechanisms of cannabis use in relation to neuropsychiatric problems and how the endocannabinoid system may be targeted to treat psychosis and other disorders.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Leary DS, Block RI, Flaum M, Schultz SK, Boles Ponto LL, Watkins GL, et al. Acute marijuana effects on rCBF and cognition: a PET study. NeuroReport. 2000;11(17):3835–41. https://doi.org/10.1097/00001756-200011270-00047.

    Article  PubMed  Google Scholar 

  54. Sneider JT, Pope HG Jr, Silveri MM, Simpson NS, Gruber SA, Yurgelun-Todd DA. Altered regional blood volume in chronic cannabis smokers. Exp Clin Psychopharmacol. 2006;14(4):422–8. https://doi.org/10.1037/1064-1297.14.4.422.

    Article  CAS  PubMed  Google Scholar 

  55. van Hell HH, Bossong MG, Jager G, Kristo G, van Osch MJ, Zelaya F, et al. Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study. Int J Neuropsychopharmacol. 2011;14(10):1377–88. https://doi.org/10.1017/s1461145711000526.

    Article  PubMed  Google Scholar 

  56. Crippa JA, Derenusson GN, Ferrari TB, Wichert-Ana L, Duran FL, Martin-Santos R, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol. 2011;25(1):121–30. https://doi.org/10.1177/0269881110379283.

    Article  CAS  PubMed  Google Scholar 

  57. Crippa JA, Zuardi AW, Garrido GE, Wichert-Ana L, Guarnieri R, Ferrari L, et al. Effects of cannabidiol (CBD) on regional cerebral blood flow. Neuropsychopharmacology. 2004;29(2):417–26. https://doi.org/10.1038/sj.npp.1300340.

    Article  CAS  PubMed  Google Scholar 

  58. Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SARB, et al. Manipulating brain connectivity with δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage. 2012;63(3):1701–11. https://doi.org/10.1016/j.neuroimage.2012.07.051.

    Article  CAS  PubMed  Google Scholar 

  59. Ramaekers JG, Van Wel JH, Spronk D, Franke B, Kenis G, Toennes SW, et al. Cannabis and cocaine decrease cognitive impulse control and functional corticostriatal connectivity in drug users with low activity DBH genotypes. Brain Imaging Behav. 2016;10(4):1254–63. https://doi.org/10.1038/srep26843.

    Article  CAS  PubMed  Google Scholar 

  60. Grimm O, Löffler M, Kamping S, Hartmann A, Rohleder C, Leweke M, et al. Probing the endocannabinoid system in healthy volunteers: cannabidiol alters fronto-striatal resting-state connectivity. Eur Neuropsychopharmacol. 2018;28(7):841–9.

    Article  CAS  PubMed  Google Scholar 

  61. Colizzi M, Weltens N, McGuire P, Lythgoe D, Williams S, Van Oudenhove L, et al. Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol Psychiatry. 2020;25(12):3231–40. https://doi.org/10.1038/s41380-019-0374-8.

    Article  CAS  PubMed  Google Scholar 

  62. Mason NL, Theunissen EL, Hutten N, Tse DHY, Toennes SW, Stiers P, et al. Cannabis induced increase in striatal glutamate associated with loss of functional corticostriatal connectivity. Eur Neuropsychopharmacol. 2019;29(2):247–56. https://doi.org/10.1016/j.euroneuro.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  63. Pretzsch CM, Freyberg J, Voinescu B, Lythgoe D, Horder J, Mendez MA, et al. Effects of cannabidiol on brain excitation and inhibition systems: a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder. Neuropsychopharmacology. 2019;44(8):1398–405. https://doi.org/10.1038/s41386-019-0333-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR Jr, Jones RW, et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimer’s Research & Therapy. 2016;8:39. https://doi.org/10.1186/s13195-016-0207-9.

    Article  Google Scholar 

  65. Weinstein G, Sznitman SR. The implications of late-life cannabis use on brain health: a mapping review and implications for future research. Ageing Res Rev. 2020;59: 101041. https://doi.org/10.1016/j.arr.2020.101041.

    Article  PubMed  Google Scholar 

  66. Bilkei-Gorzo A, Albayram O, Draffehn A, Michel K, Piyanova A, Oppenheimer H, et al. A chronic low dose of Δ(9)-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med. 2017;23(6):782–7. https://doi.org/10.1038/nm.4311.

    Article  CAS  PubMed  Google Scholar 

  67. Sarne Y, Toledano R, Rachmany L, Sasson E, Doron R. Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol Aging. 2018;61:177–86. https://doi.org/10.1016/j.neurobiolaging.2017.09.025.

    Article  CAS  PubMed  Google Scholar 

  68. Gruber SA, Sagar KA, Dahlgren MK, Racine MT, Smith RT, Lukas SE. Splendor in the grass? A pilot study assessing the impact of medical marijuana on executive function. Front Pharmacol. 2016;7:355. https://doi.org/10.3389/fphar.2016.00355.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gruber SA, Sagar KA, Dahlgren MK, Gonenc A, Smith RT, Lambros AM, et al. The grass might be greener: medical marijuana patients exhibit altered brain activity and improved executive function after 3 months of treatment. Front Pharmacol. 2018;8:983. https://doi.org/10.3389/fphar.2017.00983.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thayer RE, YorkWilliams SL, Hutchison KE, Bryan AD. Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers. Psychiatry Research: Neuroimaging. 2019;285:58–63. https://doi.org/10.1016/j.pscychresns.2019.02.001.

    Article  PubMed  Google Scholar 

  71. Karoly HC, Skrzynski CJ, Moe E, Bryan AD, Hutchison KE. Investigating associations between inflammatory biomarkers, gray matter, neurofilament light and cognitive performance in a healthy aging sample. under review.

  72. Watson K, Bryan AD, Ellingson JM, Skrzynski C, Hutchison KE. Cannabis use alters resting state functional connectivity in the aging brain. under review.

  73. Mueller RL, Ellingson JM, Bidwell LC, Bryan AD, Hutchison KE. Are the acute effects of THC different in aging adults? Brain Sci. 2021;11(5):590. https://doi.org/10.3390/brainsci11050590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015;16(1):30–42. https://doi.org/10.1038/nrn3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oddi S, Scipioni L, Maccarrone M. Endocannabinoid system and adult neurogenesis: a focused review. Current Opinions in Pharmacology. 2020;50:25–32. https://doi.org/10.1016/j.coph.2019.11.002.

    Article  CAS  Google Scholar 

  76. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69. https://doi.org/10.1111/j.1365-2567.2009.03225.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep. 2020;53(1):10–9. https://doi.org/10.5483/BMBRep.2020.53.1.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC. Cognitive dysfunction with aging and the role of inflammation. Therapeutic Advances in Chronic Disease. 2011;2(3):175–95. https://doi.org/10.1177/2040622311399145.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rafnsson SB, Deary IJ, Smith FB, Whiteman MC, Rumley A, Lowe GD, et al. Cognitive decline and markers of inflammation and hemostasis: the Edinburgh Artery Study. J Am Geriatr Soc. 2007;55(5):700–7. https://doi.org/10.1111/j.1532-5415.2007.01158.x.

    Article  PubMed  Google Scholar 

  80. Gimeno D, Marmot MG, Singh-Manoux A. Inflammatory markers and cognitive function in middle-aged adults: the Whitehall II study. Psychoneuroendocrinology. 2008;33(10):1322–34. https://doi.org/10.1016/j.psyneuen.2008.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fuchs T, Trollor JN, Crawford J, Brown DA, Baune BT, Samaras K, et al. Macrophage inhibitory cytokine-1 is associated with cognitive impairment and predicts cognitive decline: the Sydney Memory and Aging Study. Aging Cell. 2013;12(5):882–9. https://doi.org/10.1111/acel.12116.

    Article  CAS  PubMed  Google Scholar 

  82. Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiat. 2008;64(6):484–90. https://doi.org/10.1016/j.biopsych.2008.04.016.

    Article  CAS  PubMed  Google Scholar 

  83. Schram MT, Euser SM, de Craen AJ, Witteman JC, Frölich M, Hofman A, et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc. 2007;55(5):708–16. https://doi.org/10.1111/j.1532-5415.2007.01159.x.

    Article  PubMed  Google Scholar 

  84. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73(10):768–74. https://doi.org/10.1212/WNL.0b013e3181b6bb95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Faria MC, Gonçalves GS, Rocha NP, Moraes EN, Bicalho MA, Gualberto Cintra MT, et al. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. Journal of Psychiatry Research. 2014;53:166–72. https://doi.org/10.1016/j.jpsychires.2014.01.019.

    Article  Google Scholar 

  86. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2018;4:575–90. https://doi.org/10.1016/j.trci.2018.06.014.

    Article  Google Scholar 

  87. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009;1(7):1333–49. https://doi.org/10.4155/fmc.09.93.

    Article  CAS  PubMed  Google Scholar 

  88. Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J. 2016;30(11):3682–9. https://doi.org/10.1096/fj.201600646R.

    Article  CAS  PubMed  Google Scholar 

  89. Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology. 2018;43(1):52–79. https://doi.org/10.1038/npp.2017.204.

    Article  CAS  PubMed  Google Scholar 

  90. Willford JA, Goldschmidt L, De Genna NM, Day NL, Richardson GA. A longitudinal study of the impact of marijuana on adult memory function: prenatal, adolescent, and young adult exposures. Neurotoxicol Teratol. 2021;84: 106958. https://doi.org/10.1016/j.ntt.2021.106958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hutchison KE, Bidwell LC, Ellingson JM, Bryan AD. Cannabis and health research: rapid progress requires innovative research designs. Value in Health. 2019;22(11):1289–94. https://doi.org/10.1016/j.jval.2019.05.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Melissa Roark and Jamie Cavanaugh for their help in preparing this manuscript.

Funding

Funding for this study was provided by the National Institutes of Health Grants DA000357 (JDH), DA042755 (JMR), DA044131 and AT009541 (LCB), DA050515 and AG066698 (ADB), DA032555 and DA042755 (CJH), and DA048069 and DA039707 (KEH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarrod M. Ellingson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Addictions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellingson, J.M., Hinckley, J.D., Ross, J.M. et al. The Neurocognitive Effects of Cannabis Across the Lifespan. Curr Behav Neurosci Rep 8, 124–133 (2021). https://doi.org/10.1007/s40473-021-00244-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-021-00244-7

Keywords

Navigation