Skip to main content
Log in

Wind tunnel and CFD analysis of dust re-emission potential from ground regions around successive stockpiles

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Open industrial yards of granular materials can result in a large amount of particles emitted into the atmosphere due to wind erosion, offering risks to the environment and to the human health. It is important to estimate these emissions in order to manage dust control techniques and environmental polices requirements. There are several studies on particles emission from stockpiles surfaces, but there are few studies considering the re-emission that can occur from the regions around the stockpiles. Therefore, the present work aims to investigate the influence of the fluid flow complex structures near the ground region surrounding stockpiles and how they can influence the re-emission of particles. Experimental work using the oil-film technique and numerical simulations of the flow over one and two successive stockpiles oriented 30°, 60° and 90° to the incoming flow were performed. The results showed that a stockpile or successive stockpiles oriented 60° must be avoided in industrial sites as they promote high values of re-emitted mass around the piles. On the other hand, piles oriented 90° to the incoming flow showed the lowest re-emission potential for the surroundings. Finally, the gap between successive stockpiles showed insignificant influence on the emission estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tiwary A, Colls J (2010) Air pollution: measurement, modelling and mitigation, vol 47(8), 3rd edn. Routledge, New York. https://doi.org/10.5860/choice.47-4447

    Book  Google Scholar 

  2. An Z, Jin Y, Li J, Li W, Wu W (2018) Particulate matter. Curr Allergy Asthma Rep 18(15):3–9. https://doi.org/10.1007/s11882-018-0768-8

    Article  Google Scholar 

  3. Bové H et al (2019) Ambient black carbon particles reach the fetal side of human placenta. Nat Commun 10(1):1–7. https://doi.org/10.1038/s41467-019-11654-3

    Article  MathSciNet  Google Scholar 

  4. Hadley MB, Vedanthan R, Fuster V (2018) Air pollution and cardiovascular disease: a window of opportunity. Nat Rev Cardiol 15(4):193–194. https://doi.org/10.1038/nrcardio.2017.207

    Article  Google Scholar 

  5. Miller MR (2020) Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2020.01.004

    Article  Google Scholar 

  6. Seaton A, Tran L, Chen R, Maynard RL, Whalley LJ (2020) Pollution, particles, and dementia: a hypothetical causative pathway. Int J Environ Res Public Health 17(3):862. https://doi.org/10.3390/ijerph17030862

    Article  Google Scholar 

  7. Sigaux J, Biton J, André E, Semerano L, Boissier MC (2019) Air pollution as a determinant of rheumatoid arthritis. Joint Bone Spine 86(1):37–42. https://doi.org/10.1016/j.jbspin.2018.03.001

    Article  Google Scholar 

  8. Li X et al (2022) Air curtain dust-collecting technology: an experimental study on the performance of a large-scale dust-collecting system. J Wind Eng Ind Aerodyn 220(1):104875. https://doi.org/10.1016/j.jweia.2021.104875

    Article  Google Scholar 

  9. USEPA (2006) 13.2.5 Industrial wind erosion. Compil Air Pollut Emiss Factors. https://doi.org/10.1130/0091-7613(1998)026%3c0363

    Article  Google Scholar 

  10. Badr T, Harion JL (2005) Numerical modelling of flow over stockpiles: implications on dust emissions. Atmos Environ 39(30):5576–5584. https://doi.org/10.1016/j.atmosenv.2005.05.053

    Article  Google Scholar 

  11. Badr T (2007) Quantification des émissions atmosphériques diffuses produites par érosion éolienne

  12. Badr T, Harion J-L (2007) Quantification of diffuse dust emissions from open air sources on industrial sites. In: 3rd IASME/WSEAS international conference on energy, environment and sustainable development (EEESD ’07). ISBN: 978-960-8457-88-1, no January, pp 276–280

  13. Toraño JA, Rodriguez R, Diego I, Rivas JM, Pelegry A (2007) Influence of the pile shape on wind erosion CFD emission simulation. Appl Math Model 31(11):2487–2502. https://doi.org/10.1016/j.apm.2006.10.012

    Article  MATH  Google Scholar 

  14. Diego I, Pelegry A, Torno S, Toraño J, Menendez M (2009) Simultaneous CFD evaluation of wind flow and dust emission in open storage piles. Appl Math Model 33(7):3197–3207. https://doi.org/10.1016/j.apm.2008.10.037

    Article  Google Scholar 

  15. Turpin C, Harion JL (2009) Numerical modeling of flow structures over various flat-topped stockpiles height: implications on dust emissions. Atmos Environ 43(35):5579–5587. https://doi.org/10.1016/j.atmosenv.2009.07.047

    Article  Google Scholar 

  16. Faria R, Ferreira AD, Sismeiro JL, Mendes JCF, Sousa ACM (2011) Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Res 3(3):303–314. https://doi.org/10.1016/j.aeolia.2011.07.004

    Article  Google Scholar 

  17. Farimani AB, Ferreira AD, Sousa ACM (2011) Computational modeling of the wind erosion on a sinusoidal pile using a moving boundary method. Geomorphology 130(3–4):299–311. https://doi.org/10.1016/j.geomorph.2011.04.012

    Article  Google Scholar 

  18. Furieri B, Russeil S, Harion J, Santos J, Milliez M (2012) Comparative analysis of dust emissions: isolated stockpile vs two nearby stockpile. WIT Trans Ecol Environ 157:285–293. https://doi.org/10.2495/AIR120

    Article  Google Scholar 

  19. Derakhshani SM, Schott DL, Lodewijks G (2013) Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method. AIP Conf Proc 1542:1055–1058. https://doi.org/10.1063/1.4812116

    Article  Google Scholar 

  20. Furieri B, Russeil S, Harion JL, Turpin C, Santos JM (2012) Experimental surface flow visualization and numerical investigation of flow structure around an oblong stockpile. Environ Fluid Mech 12(6):533–553. https://doi.org/10.1007/s10652-012-9249-0

    Article  Google Scholar 

  21. Kia S, Flesch TK, Freeman BS, Aliabadi AA (2021) Atmospheric transport over open-pit mines: the effects of thermal stability and mine depth. J Wind Eng Ind Aerodyn 214(May):104677. https://doi.org/10.1016/j.jweia.2021.104677

    Article  Google Scholar 

  22. Du C, Wang J, Wang Y (2021) Study on environmental pollution caused by dumping operation in open pit mine under different factors. J Wind Eng Ind Aerodyn 226(December 2021):105044. https://doi.org/10.1016/j.jweia.2022.105044

    Article  Google Scholar 

  23. Balladore FJ, Benito JG, Uñac RO, Vidales AM (2020) Mineral dust resuspension under vibration: onset conditions and the role of humidity. Particuology 50:112–119. https://doi.org/10.1016/j.partic.2019.07.005

    Article  Google Scholar 

  24. Bogacki M, Mazur M, Oleniacz R, Rzeszutek M, Szulecka A (2018) Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality. E3S Web Conf 28:1–10. https://doi.org/10.1051/e3sconf/20182801003

    Article  Google Scholar 

  25. Patella V et al (2018) Urban air pollution and climate change: ‘The Decalogue: Allergy Safe Tree’ for allergic and respiratory diseases care. Clin Mol Allergy 16(1):1. https://doi.org/10.1186/s12948-018-0098-3

    Article  Google Scholar 

  26. Gulia S, Goyal P, Goyal SK, Kumar R (2019) Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review. Int J Environ Sci Technol 16(3):1717–1728. https://doi.org/10.1007/s13762-018-2001-7

    Article  Google Scholar 

  27. Islamov RS (2020) Analysis of the dynamics of dust reentrainment with simultaneous electrostatic deposition and without any deposition after a jump of airflow velocity. J Aerosol Sci 144(October 2019):105533. https://doi.org/10.1016/j.jaerosci.2020.105533

    Article  Google Scholar 

  28. Iversen JD, White BR (1982) Saltation threshold on Earth, Mars and Venus. Sedimentology 29:111–119

    Article  Google Scholar 

  29. Foucaut JM, Stanislas M (1996) Take-off threshold velocity of solid particles lying under a turbulent boundary layer. Exp Fluids 20(5):377–382. https://doi.org/10.1007/BF00191019

    Article  Google Scholar 

  30. Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105:22437–22443. https://doi.org/10.1029/2000JD900304

    Article  Google Scholar 

  31. Desreumaux O, Bourez JP (1989) Préparation de bouillies pour visualisation pariétales sur maquette de sous-marin à cepra 19, France

  32. Ferreira MCS et al (2020) Experimental and numerical investigation of building effects on wind erosion of a granular material stockpile. Environ Sci Pollut Res 27:14

    Article  Google Scholar 

  33. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  34. Furieri B, Santos JM, Russeil S, Harion JL (2014) Aeolian erosion of storage piles yards: contribution of the surrounding areas. Environ Fluid Mech 14(1):51–67. https://doi.org/10.1007/s10652-013-9293-4

    Article  Google Scholar 

  35. De Morais CL, Ferreira MCS, Santos JM, Furieri B, Harion JL (2018) Influence of non-erodible particles with multimodal size distribution on aeolian erosion of storage piles of granular materials. Environ Fluid Mech. https://doi.org/10.1007/s10652-018-9640-6

    Article  Google Scholar 

  36. Ferreira MCS et al (2019) An experimental and numerical study of the aeolian erosion of isolated and successive piles. Environ Fluid Mech. https://doi.org/10.1007/s10652-019-09702-z

    Article  Google Scholar 

  37. Badr T, Harion JL (2007) Effect of aggregate storage piles configuration on dust emissions. Atmos Environ 41(2):360–368. https://doi.org/10.1016/j.atmosenv.2006.07.038

    Article  Google Scholar 

  38. Furieri B, Harion J-L, Santos JM, Milliez M (2012) Comparative analysis of dust emissions: isolated stockpile vs two nearby stockpiles. Air Pollution XX 157:285–294

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). It was also carried out with the financial support of Fapes (Fundação de Amparo à Pesquisa e Inovação do Espírito Santo), ArcelorMittal and EDF R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. de Morais.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furieri, B., de Morais, C.L., Santos, J.M. et al. Wind tunnel and CFD analysis of dust re-emission potential from ground regions around successive stockpiles. J Braz. Soc. Mech. Sci. Eng. 45, 653 (2023). https://doi.org/10.1007/s40430-023-04587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04587-y

Keywords

Navigation