Skip to main content
Log in

Multi-phase fluid–structure interaction using adaptive mesh refinement and immersed boundary method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present work, the authors aim to solve incompressible fluid–structure interaction problems in multi-phase flows using the partitioned approach with an in-house three-dimensional, block-structured, adaptive mesh refinement (AMR) code called MFSim. A projection method for large eddy simulation (LES) of Navier–Stokes equations and a VOF-PLIC (volume of fluid - piecewise linear interface calculation) method with finite volume discretization is used to simulate the turbulent incompressible multi-phase flows. The solid structures, immersed in the flow, have the fluid-dynamic forces modeled with the immersed boundary method and displacements calculated using the finite element model based on the Mindlin–Reissner plate theory. In the partitioned algorithm, fluid dynamic forces acting on the immersed surface are applied to the finite element model to predict the structure’s displacements and velocities at each time step. Strong coupling between fluid and structure was implemented and the advantages and drawbacks of multi-direct forcing algorithm for these situations are emphasized. A series of numerical Pluck tests were conducted to validate the fluid-dynamic forces calculation and structural responses of plates in multi-phase flows. The results were compared with experiments published in the literature, and good agreement was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction - a review. Commun Comput Phys 12(02):337–377. https://doi.org/10.4208/cicp.291210.290411s

    Article  MathSciNet  MATH  Google Scholar 

  2. Tadrist L, Julio K, Saudreau M, de Langre E (2015) Leaf flutter by torsional galloping: experiments and model. J Fluids Struct 56:1–10. https://doi.org/10.1016/j.jfluidstructs.2015.04.001

    Article  Google Scholar 

  3. Kumar SP, De A, Das D (2015) Investigation of flow field of clap and fling motion using immersed boundary coupled lattice Boltzmann method. J Fluids Struct 57:247–263. https://doi.org/10.1016/j.jfluidstructs.2015.06.008

    Article  Google Scholar 

  4. Zhao X, Gao Y, Cao F, Wang X (2016) Numerical modeling of wave interactions with coastal structures by a constrained interpolation profile/immersed boundary method. Int J Numer Methods Fluids 81(5):265–283. https://doi.org/10.1002/fld.4184

    Article  MathSciNet  Google Scholar 

  5. Bartels RE, Sayma AI (2007) Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges. Philos Trans R Soc A 365(1859):2469–2499. https://doi.org/10.1098/rsta.2007.2018

    Article  Google Scholar 

  6. Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21. https://doi.org/10.1016/j.paerosci.2013.09.003

    Article  Google Scholar 

  7. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271. https://doi.org/10.1016/0021-9991(72)90065-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Tryggvason G, Sussman M, Hussaini MY (1932) Immersed boundary methods for fluid interfaces. In: Prosperetti A, Tryggvason G (eds) Computational Methods for Multiphase Flow. Cambridge University Press, pp 37–77. https://doi.org/10.1017/CBO9780511607486.004

    Chapter  Google Scholar 

  9. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517. https://doi.org/10.1017/S0962492902000077

    Article  MathSciNet  MATH  Google Scholar 

  10. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37(1):239–261. https://doi.org/10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  MATH  Google Scholar 

  11. Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331. https://doi.org/10.1115/1.1563627

    Article  Google Scholar 

  12. Uzgoren E, Singh R, Sim J, Shyy W (2007) Computational modeling for multiphase flows with spacecraft application. Prog Aerosp Sci 43(4–6):138–192. https://doi.org/10.1016/j.paerosci.2007.06.003

    Article  Google Scholar 

  13. Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2):509–534. https://doi.org/10.1006/jcph.1999.6293

    Article  MathSciNet  MATH  Google Scholar 

  14. Pivello M, Villar M, Serfaty R, Roma A, Silveira-Neto A (2014) A fully adaptive front tracking method for the simulation of two phase flows. Int J Multiph Flow 58:72–82. https://doi.org/10.1016/j.ijmultiphaseflow.2013.08.009

    Article  MathSciNet  Google Scholar 

  15. Denner F, van der Heul DR, Oud GT, Villar MM, da Silveira Neto A, van Wachem BG (2014) Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int J Multiph Flow 61:37–47. https://doi.org/10.1016/j.ijmultiphaseflow.2013.12.011

    Article  MathSciNet  Google Scholar 

  16. Damasceno MMR, Santos JGdF, Vedovoto JM (2018) Simulation of turbulent reactive flows using a FDF methodology - advances in particle density control for normalized variables. Comput Fluids 170:128–140. https://doi.org/10.1016/j.compfluid.2018.05.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Germano M (1992) Turbulence the filtering approach. J Fluid Mech 238(325):325–336. https://doi.org/10.1017/S0022112092001733

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang Z, Fan J, Luo K (2008) Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int J Multiph Flow 34(3):283–302. https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.004

    Article  Google Scholar 

  19. Lima E, Silva A, Silveira-Neto A, Damasceno J (2003) Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J Computat Phys 189(2):351–370. https://doi.org/10.1016/S0021-9991(03)00214-6

    Article  MATH  Google Scholar 

  20. Lindholm U, Kana D, Chu W, Abramson H (1965) Elastic vibration characteristics of cantilever plates in water. J Ship Res 9(1):11–22

    Article  Google Scholar 

  21. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Computat Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  22. Auricchio F, Taylor RL (1994) A shear deformable plate element with an exact thin limit. Comput Methods Appl Mech Eng 118(3–4):393–412. https://doi.org/10.1016/0045-7825(94)90009-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Centrella J, Wilson JR (1984) Planar numerical cosmology. II - the difference equations and numerical tests. Astrophys J Suppl Ser 54:229–249. https://doi.org/10.1086/190927

    Article  Google Scholar 

  24. Berger M, Rigoutsos I (1991) An algorithm for point clustering and grid generation. IEEE Trans Syst Man Cybern 21(5):1278–1286. https://doi.org/10.1109/21.120081

    Article  Google Scholar 

  25. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Computat Phys 152(2):423–456. https://doi.org/10.1006/jcph.1998.6168

    Article  MATH  Google Scholar 

  26. Shirani E, Ashgriz N, Mostaghimi J (2005) Interface pressure calculation based on conservation of momentum for front capturing methods. J Computat Phys 203(1):154–175. https://doi.org/10.1016/j.jcp.2004.08.017

    Article  MATH  Google Scholar 

  27. Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Computat Appl Math 6(1):19–26. https://doi.org/10.1016/0771-050X(80)90013-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang J, Stern F (2012) A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions. J Computat Phys 231(15):5029–5061. https://doi.org/10.1016/j.jcp.2012.04.012

    Article  MathSciNet  MATH  Google Scholar 

  29. Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227(16):7587–7620. https://doi.org/10.1016/j.jcp.2008.04.028

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang J, Preidikman S, Balaras E (2008) A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies. J Fluids Struct 24(2):167–182. https://doi.org/10.1016/j.jfluidstructs.2007.08.002

    Article  Google Scholar 

  31. Liang CC, Liao CC, Tai YS, Lai WH (2001) The free vibration analysis of submerged cantilever plates. Ocean Eng 28(9):1225–1245. https://doi.org/10.1016/S0029-8018(00)00045-7

    Article  Google Scholar 

  32. Fu Y, Price WG (1987) Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid. J Sound Vib 118(3):495–513. https://doi.org/10.1016/0022-460X(87)90366-X

    Article  Google Scholar 

  33. Ergin A, Uğurlu B (2003) Linear vibration analysis of cantilever plates partially submerged in fluid. J Fluids Struct 17(7):927–939. https://doi.org/10.1016/S0889-9746(03)00050-1

    Article  Google Scholar 

  34. Marcus MS (1978) A finite-element method applied to the vibration of submerged plates. J Ship Res 22(2):94–99

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support provided to the present research effort by CNPq (306200/2017-1, 431337/2018-7, 305958/2020-8, and 431337/2018-7), FAPEMIG (PPM-00187-18), CAPES through the INCTEIE, and PETROBRAS (2018/00082-0, 2018/00419-5, 2019/00056-2, and 2019/00106-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldemir Ap Cavalini Jr.

Additional information

Technical Editor Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, P.R.C., Neto, H.R., Villar, M.M. et al. Multi-phase fluid–structure interaction using adaptive mesh refinement and immersed boundary method. J Braz. Soc. Mech. Sci. Eng. 44, 152 (2022). https://doi.org/10.1007/s40430-022-03417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03417-x

Keywords

Navigation