Skip to main content
Log in

Should we really compress the fracture line in the treatment of Salter–Harris type 4 distal femoral fractures? A biomechanical study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the indirect effect on physeal plate during interfragmentary compression of a Salter–Harris (SH) type 4 distal femoral fracture has been investigated. Three Dimensional (3D) model of a single configuration has been performed via SolidWorks. ANSYS Workbench software was used for numerical analyses. All boundary conditions have been defined in finite element analysis software. Since it is premature to state that compression created an additional stress load on the physeal plate in vivo, according to our results, it has been found that lateromedial compression in SH type 4 fracture of the distal femur caused an additional stress load on the physeal plate ex vivo. It is believed that screws need to be fixed without compression to avoid an additional iatrogenic physeal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salter RB, Harris WR (1963) Injuries involving the epiphyseal plate. JBJS 45(3):587–622

    Article  Google Scholar 

  2. Cepela DJ, Tartaglione JP, Dooley TP, Patel PN (2016) Classifications in brief: Salter–Harris classification of pediatric physeal fractures. Clin Orthop Relat Res® 474(11):2531–2537. https://doi.org/10.1007/s11999-016-4891-3

    Article  Google Scholar 

  3. Rogers LF (1970) The radiography of epiphyseal injuries. Radiology 96(2):289–299. https://doi.org/10.1148/96.2.289

    Article  Google Scholar 

  4. Peterson CA, Peterson HA (1972) Analysis of the incidence of injuries to the epiphyseal growth plate. J Trauma 12(4):275–281

    Article  Google Scholar 

  5. Wall EJ, May MM (2012) Growth plate fractures of the distal femur. J Pediatr Orthop 32:S40–S46. https://doi.org/10.1097/BPO.0b013e3182587086

    Article  Google Scholar 

  6. Herring JA, Children TSRHf (2002) Tachdjian’s pediatric orthopaedics, vol 1. c. Saunders, ‎Philadelphia

    Google Scholar 

  7. Beaty JH, Rockwood CA, Kasser JR (2010) Rockwood and Wilkins’ fractures in children, vol 3. Wolters Kluwer/Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  8. Buch BD, Myerson MS (1995) Salter–Harris type IV epiphyseal fracture of the proximal phalanx of the great toe: a case report. Foot Ankle Int 16(4):216–219. https://doi.org/10.1177/107110079501600410

    Article  Google Scholar 

  9. Arkader A, Warner WCJ, Horn BD, Shaw RN, Wells L (2007) Predicting the outcome of physeal fractures of the distal femur. J Pediatr Orthop 27(6):703–708. https://doi.org/10.1097/BPO.0b013e3180dca0e5

    Article  Google Scholar 

  10. Lin D, Lian K, Hong J, Ding Z, Zhai W (2012) Pediatric physeal slide-traction plate fixation for comminuted distal femur fractures in children. J Pediatr Orthop 32(7):682–686. https://doi.org/10.1097/BPO.0b013e3182694e21

    Article  Google Scholar 

  11. Lin D, Hong J, Lian K, Zhai W, Ding Z (2010) Effects of a pediatric physeal slide-traction plate on fracture healing: an experimental study in a goat model. J Pediatr Orthop 30(8):818–824. https://doi.org/10.1097/BPO.0b013e3181fbebc7

    Article  Google Scholar 

  12. Zionts LE (2003) Fractures and dislocations about the knee. Skeletal trauma in children, 3rd edn. Saunders, USA, pp 443–449

    Google Scholar 

  13. http://www.wheelessonline.com/. Accessed 2014

  14. Rüedi TP, Murphy WM (2000) AO principles of fracture management. AO Publishing, Davos

    Google Scholar 

  15. Mann DC, Rajmaira S (1990) Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0–16 years. J Pediatr Orthop 10(6):713–716

    Article  Google Scholar 

  16. Peterson HA, Madhok R, Benson JT, Ilstrup DM, Melton LJI (1994) Physeal fractures: part 1. Epidemiology in Olmsted County, Minnesota, 1979–1988. J Pediatr Orthop 14(4):423–430

    Article  Google Scholar 

  17. Basener CJ, Mehlman CT, DiPasquale TG (2009) Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis. J Orthop Trauma 23(9):663–667. https://doi.org/10.1097/BOT.0b013e3181a4f25b

    Article  Google Scholar 

  18. Eid AM, Hafez MA (2002) Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases. Injury 33(3):251–255. https://doi.org/10.1016/S0020-1383(01)00109-7

    Article  Google Scholar 

  19. Dahl WJ, Silva S, Vanderhave KL (2014) Distal femoral physeal fixation: are smooth pins really safe? J Pediatr Orthop 34(2):134–138. https://doi.org/10.1097/bpo.0000000000000083

    Article  Google Scholar 

  20. Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR (2013) An anatomic study of the distal femoral epiphysis. J Pediatr Orthop 33(7):743–749

    Article  Google Scholar 

  21. Lombardo S, Harvey JJ (1977) Fractures of the distal femoral epiphyses. Factors influencing prognosis: a review of thirty-four cases. JBJS 59(6):742–751

    Article  Google Scholar 

  22. Gok K, Inal S, Gok A, Pinar AM (2016) Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures. J Braz Soc Mech Sci Eng 39:1–9. https://doi.org/10.1007/s40430-016-0666-8

    Article  Google Scholar 

  23. Gok K (2015) Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations. Measurement 75:57–68. https://doi.org/10.1016/j.measurement.2015.07.034

    Article  Google Scholar 

  24. Inal S, Taspinar F, Gulbandilar E, Gok K (2015) Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method. Int J Med Robot Comput Assist Surg 11(1):95–103

    Article  Google Scholar 

  25. Erdem M, Gok K, Gokce B, Gok A (2016) Numerical analysis of temperature, screwing moment and thrust force using finite element method in bone screwing process. J Mech Med Biol 17:1750016

    Article  Google Scholar 

  26. Gok K, Gok A, Kisioglu Y (2014) Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method. Int J Adv Manuf Technol 76:1–12. https://doi.org/10.1007/s00170-014-6327-0

    Article  Google Scholar 

  27. Afsar E, Taspinar F, Calik BB, Ozkan Y, Gok K (2016) Use of the finite element analysis to determine stresses in the knee joints of osteoarthritis patients with different Q angles. J Braz Soc Mech Sci Eng 39:1–7

    Google Scholar 

  28. Gok K, Taspinar F, Inal S, Gulbandilar E (2015) Importance of sidebar-bone spacing during the application of pertrochanteric fixator on femoral intertrochanteric fracture model; comparison of the biomechanical effects using finite element method. Biomed Eng Appl Basis Commun 27(03):1550030

    Article  Google Scholar 

  29. Goffin JM, Pankaj P, Simpson AH (2013) The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. J Orthopaed Res 31(4):596–600. https://doi.org/10.1002/jor.22266

    Article  Google Scholar 

  30. Atmaca H, Kesemenli C, Memişoğlu K, Özkan A, Celik Y (2013) Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study. Knee Surg Sports Traumatol Arthrosc 21(12):2667–2673. https://doi.org/10.1007/s00167-012-2318-6

    Article  Google Scholar 

  31. ANSYS Workbench 17 (2017) AnsysWorkbench Material Library

  32. Yuan-Kun T, Yau-Chia L, Wen-Jen Y, Li-Wen C, You-Yao H, Yung-Chuan C, Li-Chiang L (2009) Temperature rise simulation during a Kirschner pin drilling in bone. In: 3rd international conference on bioinformatics and biomedical engineering, 2009. ICBBE 2009, Beijing 11–13 June 2009, pp 1–4. https://doi.org/10.1109/icbbe.2009.5163563

  33. Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20(5):498–507. https://doi.org/10.1016/j.clinbiomech.2005.01.009

    Article  Google Scholar 

  34. (2018) https://lib.ugent.be/fulltxt/RUG01/002/007/084/RUG01-002007084_2013_0001_AC.pdf. Accessed 03 Sept 2018

  35. Trad Z, Barkaoui A, Chafra M, Tavares JMR (2018) Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc Inst Mech Eng 232(6):553–564. https://doi.org/10.1177/0954411918770706

    Article  Google Scholar 

  36. Atmaca H, Kesemenli CC, Memişoğlu K, Özkan A, Celik Y (2013) Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study. Knee Surg Sports Traumatol Arthrosc 21(12):2667–2673. https://doi.org/10.1007/s00167-012-2318-6

    Article  Google Scholar 

  37. Wang Y, Fan Y, Zhang M (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys 36(4):439–447. https://doi.org/10.1016/j.medengphy.2014.01.004

    Article  Google Scholar 

  38. Williams JL, Do PD, Eick JD, Schmidt TL (2001) Tensile properties of the physis vary with anatomic location, thickness, strain rate and age. J Orthop Res 19(6):1043–1048. https://doi.org/10.1016/S0736-0266(01)00040-7

    Article  Google Scholar 

  39. Edmunds I, Nade S (1993) Injuries of the distal femoral growth plate and epiphysis: should open reduction be performed? Aust NZ Surg 63(3):195–199

    Article  Google Scholar 

  40. Wójcik K, Wojciechowski P, Kusz D (1998) Surgical treatment for Salter–Harris type II distal femoral epiphysis injury. Chir Narzadow Ruchu Ortop Pol 63(2):143–149

    Google Scholar 

  41. Dorman T, Synder M, Grzegorzewski A, Adamczyk E, Sibiński M (2007) Treatment of physeal fractures in children. Chir Narzadow Ruchu Ortop Pol 72(5):335–340

    Google Scholar 

  42. Young EY, Stans AA (2018) Distal femoral physeal fractures. J Knee Surg 31(06):486–489. https://doi.org/10.1055/s-0038-1627465

    Article  Google Scholar 

  43. Pennock AT, Ellis HB, Willimon SC, Wyatt C, Broida SE, Dennis MM, Bastrom T (2017) Intra-articular physeal fractures of the distal femur: a frequently missed diagnosis in adolescent athletes. Orthop J Sports Med 5(10):2325967117731567. https://doi.org/10.1177/2325967117731567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Gok.

Ethics declarations

Conflict of interest

There is no conflict of interest any financial funding or materials in the manuscript.

Ethical approval

Not required for used sawbones samples in this study.

Additional information

Technical Editor: Estevam Barbosa Las Casas, Ph.D.

Arif Gok: Senior Author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inal, S., Gok, K., Gok, A. et al. Should we really compress the fracture line in the treatment of Salter–Harris type 4 distal femoral fractures? A biomechanical study. J Braz. Soc. Mech. Sci. Eng. 40, 528 (2018). https://doi.org/10.1007/s40430-018-1448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1448-2

Keywords

Navigation