Skip to main content
Log in

Food Addiction, Skating on Thin Ice: a Critical Overview of Neuroimaging Findings

  • Food Addiction (A Meule, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The food addiction model suggests the compelling hypothesis that compulsive overeating and drug addictions share common neurobiological underpinnings. However, neuroimaging results are inconsistent, and they are difficult to integrate with each other. This mini-review provides a critical overview of the human neuroimaging literature in food addiction and binge eating symptoms.

Recent Findings

Neuroanatomical studies suggest the involvement of the orbitofrontal cortex in food addiction. Functional imaging studies have examined whether food addiction is associated with alterations during reward processing, cognitive control, or emotion regulation. However, these results have provided limited consistency so far.

Summary

To overcome the limitations of current research, we suggest that future studies on food addiction should address four main points: (a) disentangle between the effects of food addiction and obesity; (b) discriminate between causes and consequences of food addiction; (c) address the heterogeneity of food addiction; (d) prevent overinterpretation of results and facilitate replicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009;52(2):430–6.

    PubMed  Google Scholar 

  2. Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol. 2013;48(1):1–19.

    CAS  PubMed  Google Scholar 

  3. Finlayson G, Cecil J, Higgs S, Hill A, Hetherington M. Susceptibility to weight gain. Eating behaviour traits and physical activity as predictors of weight gain during the first year of university. Appetite. 2012 Jun;58(3):1091–8.

    PubMed  Google Scholar 

  4. Ziauddeen H, Fletcher PC. Is food addiction a valid and useful concept? Obes Rev. 2013 Jan;14(1):19–28.

    CAS  PubMed  Google Scholar 

  5. Meule A. A critical examination of the practical implications derived from the food addiction concept. Curr Obes Rep. 2019;8(1):11–7.

    PubMed  PubMed Central  Google Scholar 

  6. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32(1):20–39.

    CAS  PubMed  Google Scholar 

  7. Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr. 2016;55(s2):55–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev. 2014;47:295–306.

    PubMed  Google Scholar 

  9. Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 2013;73(9):827–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Adams RC, Sedgmond J, Maizey L, Chambers CD, Lawrence NS. Food addiction: implications for the diagnosis and treatment of overeating. Nutrients. 2019;11:2086.

    PubMed Central  Google Scholar 

  11. Gearhardt AN, Corbin WR, Brownell KD. Development of the Yale Food Addiction Scale Version 2.0. Psychol Addict Behav. 2016;30(1):113–21.

    PubMed  Google Scholar 

  12. Diagnostic and statistical manual of mental disorders. Fifth Edit. American Psychiatric Association; 2013.

  13. Meule A, Gearhardt AN. Ten years of the Yale Food Addiction Scale: a review of version 2.0. Curr Addict Reports. 2019;6(3):218–28.

    Google Scholar 

  14. Vainik U, García-García I, Dagher A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. Eur J Neurosci. 2018;2019:1–16.

    Google Scholar 

  15. Epel ES, Tomiyama AJ, Mason AE, Laraia BA, Hartman W, Ready K, et al. The reward-based eating drive scale: a self-report index of reward-based eating. PLoS One. 2014;9(6):e101350.

    PubMed  PubMed Central  Google Scholar 

  16. Mason AE, Vainik U, Acree M, Tomiyama AJ, Dagher A, Epel ES, et al. Improving assessment of the spectrum of reward-related eating: the RED-13. Front Psychol. 2017;8(MAY).

  17. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741–52 A.

    CAS  PubMed  Google Scholar 

  18. Volkow ND, Wang GJ, Fowler D, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24.

    CAS  PubMed  Google Scholar 

  19. Michaud A, Vainik U, Garcia-Garcia I, Dagher A. Overlapping neural endophenotypes in addiction and obesity. Front Endocrinol (Lausanne). 2017;

  20. Pedram P, Wadden D, Amini P, Gulliver W, Randell E, Cahill F, et al. Food addiction: its prevalence and significant association with obesity in the general population. PLoS One. 2013;8(9):1–6.

    Google Scholar 

  21. Flint AJ, Gearhardt AN, Corbin WR, Brownell KD, Field AE, Rimm EB. Food addiction scale measurement in 2 cohorts of middle-aged and older women. Am J Clin Nutr. 2014:578–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gearhardt AN, Boswell RG, White MA. The association of “food addiction” with disordered eating and body mass index. Eat Behav. 2014;15(3):427–33.

    PubMed  PubMed Central  Google Scholar 

  23. Pursey KM, Gearhardt AN, Burrows TL. The relationship between “ food addiction ” and visceral adiposity in young females. Physiol Behav. 2016;157:9–12.

    CAS  PubMed  Google Scholar 

  24. Schulte EM, Gearhardt AN. Development of the Modified Yale Food Addiction Scale Version 2.0. Eur Eat Disord Rev. 2017;25(4):302–8.

    PubMed  Google Scholar 

  25. Sonneville KR, Horton NJ, Micali N, Crosby RD, Swanson SA, Solmi F, et al. Longitudinal associations between binge eating and overeating and adverse outcomes among adolescents and young adults: does loss of control matter? JAMA Pediatr. 2013;167(2):149–55.

    PubMed  PubMed Central  Google Scholar 

  26. García-García I, Michaud A, Dadar M, Zeighami Y, Neseliler S, Collins DL, et al. Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes. 2019;43(5):943.

    Google Scholar 

  27. Kharabian Masouleh S, Arélin K, Horstmann A, Lampe L, Kipping JA, Luck T, et al. Higher body mass index in older adults is associated with lower gray matter volume: implications for memory performance. Neurobiol Aging. 2016;40:1–10.

    PubMed  Google Scholar 

  28. Dekkers IA, Jansen PR, Lamb HJ. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK Biobank Study. Radiology. 2019;9:181012.

    Google Scholar 

  29. • Beyer F, García-García I, Heinrich M, Schroeter ML, Sacher J, Luck T, et al. Neuroanatomical correlates of food addiction symptoms and body mass index in the general population. Hum Brain Mapp. 2019;40(9):2747–58 1–12. This study examines the association between neuroanatomical features, food addiction scores, obesity measures, personality, and eating behavior in a large population-based sample of young adults (n= 625).

    PubMed  PubMed Central  Google Scholar 

  30. Maayan L, Hoogendoorn C, Sweat V, Convit A. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity. 2011;19(7):1382–7.

    PubMed  Google Scholar 

  31. Frank GKW. Advances from neuroimaging studies in eating disorders. CNS Spectr. 2014;20(4):391–400.

    Google Scholar 

  32. Westwater ML, Seidlitz J, Diederen KMJ, Fischer S, Thompson JC. Associations between cortical thickness, structural connectivity and severity of dimensional bulimia nervosa symptomatology. Psychiatry Res Neuroimaging. 2018;271:118–25.

    PubMed  Google Scholar 

  33. Wallace GL, Richard E, Peng CS, Knodt AR, Hariri AR. Subclinical eating disorder traits are correlated with cortical thickness in regions associated with food reward and perception. Brain Imaging Behav. 2019;

  34. Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc B Biol Sci. 2018;373(1742):20170024.

    Google Scholar 

  35. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016;71(8):670–9.

    PubMed  PubMed Central  Google Scholar 

  36. Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev. 2019;68:38–53.

    PubMed  Google Scholar 

  37. Stice E, Burger KS, Yokum S. Reward regison responsivity predicts future weight gain and moderating effects of the TaqIA allele. J Neurosci. 2015;35(28):10316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.

    CAS  PubMed  Google Scholar 

  39. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Rev Lancet Psychiatry. 2016;3(8):760–73.

    Google Scholar 

  40. Robinson TE, Berridge KC. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46.

    Google Scholar 

  41. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;2(1350):43–64.

    Google Scholar 

  42. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc LondonSeries B, Biol Sci. 2008;363(1507):3191–200.

    Google Scholar 

  43. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.

    CAS  PubMed  Google Scholar 

  44. Stice E, Spoor S, Bohon C, Small DM. Blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322(October):449–52.

    CAS  PubMed  Google Scholar 

  45. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Geha PY, Aschenbrenner K, Felsted J, O’Malley SS, Small DM. Altered hypothalamic response to food in smokers. Am J Clin Nutr. 2013;97(1):15–22.

    CAS  PubMed  Google Scholar 

  47. Contreras-Rodríguez O, Martín-Pérez C, Vilar-López R, Verdejo-Garcia A. Ventral and dorsal striatum networks in obesity: link to food craving and weight gain. Biol Psychiatry. 2017;81(9):789–96.

    PubMed  Google Scholar 

  48. • Stice E, Yokum S. Relation of neural response to palatable food tastes and images to future weight gain: using bootstrap sampling to examine replicability of neuroimaging findings. Neuroimage. 2018;183:522–31 The authors test the hypothesis that striatal activity to food stimuli predicts longitudinal weight gain and report negative results.

    CAS  PubMed  Google Scholar 

  49. Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018;107(6):859–66.

    PubMed  PubMed Central  Google Scholar 

  50. Yokum S, Stice E. Weight gain is associated with changes in neural response to palatable food tastes varying in sugar and fat and palatable food images: a repeated-measures fMRI study. Am J Clin Nutr. 2019;110(6):1275–86 1–12.

    PubMed  PubMed Central  Google Scholar 

  51. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16.

    PubMed  PubMed Central  Google Scholar 

  52. Schulte EM, Yokum S, Jahn A, Gearhardt AN. Food cue reactivity in food addiction: a functional magnetic resonance imaging study. Physiol Behav. 2019;208:112574.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pursey KM, Contreras-Rodriguez O, Collins CE, Stanwell P, Burrows TL. Food addiction symptoms and amygdala response in fasted and fed states. Nutrients. 2019;11(6):1–10.

    Google Scholar 

  54. Feldstein Ewing SW, Claus ED, Hudson KA, Filbey FM, Yakes Jimenez E, Lisdahl KM, et al. Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways. Brain Imaging Behav. 2017;11(4):925–35.

    PubMed  PubMed Central  Google Scholar 

  55. Moreno-Padilla M, Verdejo-Román J, Fernández-Serrano MJ, Reyes del Paso GA, Verdejo-García A. Increased food choice-evoked brain activation in adolescents with excess weight: relationship with subjective craving and behavior. Appetite. 2018;131:7–13.

    PubMed  Google Scholar 

  56. Balodis IM, Kober H, Worhunsky PD, White MA, Stevens MC, Pearlson GD, et al. Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry. 2013;73(9):877–86.

    PubMed  PubMed Central  Google Scholar 

  57. Reiter AMMF, Heinze H-JJ, Schlagenhauf F, Deserno L. Impaired flexible reward-based decision-making in binge eating disorder: evidence from computational modeling and functional neuroimaging. Neuropsychopharmacology. 2017;42(3):1–34.

    Google Scholar 

  58. •• Mueller SV, Morishima Y, Schwab S, Wiest R, Federspiel A, Hasler G. Neural correlates of impaired reward-effort integration in remitted bulimia nervosa. Neuropsychopharmacology. 2018;43(4):868–76 This pharmachological study tests whether chatecolamine depression has an effect on reward processing in patients with remitted bulimia nervosa and in control participants.

    PubMed  Google Scholar 

  59. Dagher A, Robbins TW. Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron. 2009;61(4):502–10.

    CAS  PubMed  Google Scholar 

  60. Clark CA, Dagher A. The role of dopamine in risk taking: a specific look at Parkinson’s disease and gambling. Front Behav Neurosci. 2014;8:1–12.

    Google Scholar 

  61. Ariza M, Garolera M, Jurado MA, Garcia-Garcia I, Hernan I, Sanchez-Garre C, et al. Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: their interaction with obesity. PLoS One. 2012;7(7):e41482.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Morys F, Simmank J, Horstmann A. DRD2/ANKK1 Taq1A but not COMT single nucleotide polymorphisms contribute to the link between temporal impulsivity and obesity in men.

  63. Benton D, Young HA. A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int J Obes. 2016;40(Suppl 1(S1)):S12–21.

    CAS  Google Scholar 

  64. Munafò MR, Timpson NJ, David SP, Ebrahim S, Lawlor DA. Association of the DRD2 gene Taq1A polymorphism and smoking behavior: a meta- analysis and new data. Nicotine Tob Res. 2009;11(1):64–76.

    PubMed  PubMed Central  Google Scholar 

  65. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014;19(10):1078–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eisenstein SA, Gredysa DM, Antenor-Dorsey JA, Green L, Arbeláez AM, Koller JM, et al. Insulin, central dopamine D2 receptors, and monetary reward discounting in obesity. PLoS One. 2015;10(7):e0133621.

    PubMed  PubMed Central  Google Scholar 

  67. Broft A, Shingleton R, Kaufman J, Liu F, Kumar D, Slifstein M, et al. Striatal dopamine in bulimia nervosa: a PET imaging study. Int J Eat Disord. 2012;45(5):648–56.

    PubMed  PubMed Central  Google Scholar 

  68. Gaiser EC, Gallezot JD, Worhunsky PD, Jastreboff AM, Pittman B, Kantrovitz L, et al. Elevated dopamine D2/3 receptor availability in obese individuals: a PET imaging study with [11C](+)PHNO. Neuropsychopharmacology. 2016;41(13):3042–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Horstmann A, Fenske WK, Hankir MK. Argument for a non-linear relationship between severity of human obesity and dopaminergic tone. Obes Rev. 2015;16(10):821–30.

    CAS  PubMed  Google Scholar 

  70. • Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Associations between dopamine D2 receptor availability and BMI depend on age. Neuroimage. 2016;138:176–83 This PET study analyzes a large sample of participants and reports that the association between BMI and DRD2 availability is age-dependent.

    CAS  PubMed  Google Scholar 

  71. Franken IHA, Nijs IMT, Toes A, van der Veen FM. Food addiction is associated with impaired performance monitoring. Biol Psychol. 2018;131:49–53.

    PubMed  Google Scholar 

  72. Gearhardt AN, White MA, Potenza MN. Binge eating disorder and food addiction. Curr Drug Abuse Rev. 2011;4(3):201–7.

    PubMed  PubMed Central  Google Scholar 

  73. MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science (80-). 2000;288(5472):1835–8.

    CAS  Google Scholar 

  74. Han JE, Boachie N, Garcia-Garcia I, Michaud A, Dagher A. Neural correlates of dietary self-control in healthy adults: a meta-analysis of functional brain imaging studies. Physiol Behav 2018; Available from: https://www.sciencedirect.com/science/article/pii/S0031938418300982

  75. Volkow ND, Wang G-J, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity. 2009;17(1):60–5.

    PubMed  Google Scholar 

  76. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162(4):712–25.

    CAS  PubMed  Google Scholar 

  77. Vainik U, Baker TE, Dadar M, Zeighami Y, Michaud A, Zhang Y, et al. Neurobehavioral correlates of obesity are largely heritable. Proc Natl Acad Sci. 2018;115(37):9312–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lowe CJ, Reichelt AC, Hall PA. The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn Sci. 2019 Apr;23(4):349–61.

    PubMed  Google Scholar 

  79. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage. 2010;52(4):1696–703.

    PubMed  Google Scholar 

  80. Oliva R, Morys F, Horstmann A, Castiello U, Begliomini C. The impulsive brain: neural underpinnings of binge eating behavior in normal-weight adults. Appetite. 2019;136:33–49.

    CAS  PubMed  Google Scholar 

  81. Hege MA, Stingl KT, Kullmann S, Schag K, Giel KE, Zipfel S, et al. Attentional impulsivity in binge eating disorder modulates response inhibition performance and frontal brain networks. Int J Obes. 2015;39(2):353–60.

    CAS  Google Scholar 

  82. • Bartholdy S, O’Daly OG, Campbell IC, Banaschewski T, Barker G, Bokde ALW, et al. Neural correlates of failed inhibitory control as an early marker of disordered eating in adolescents. Biol Psychiatry. 2019;85(11):956–65 In a large sample of participants, this study examines the neurobehavioral characteristics that are associated with longitudinal incidences of binge/purge eating symptoms.

    PubMed  Google Scholar 

  83. Lowe C, Vincent C, Hall P. Effects of noninvasive brain stimulation on consumption: a meta-analytic review. Psychosom Med. 2017;79(1):2–13.

    PubMed  Google Scholar 

  84. •• Sedgmond J, Lawrence NS, Verbruggen F, Morrison S, Chambers CD, Adams RC. Prefrontal brain stimulation during food-related inhibition training: effects on food craving, food consumption and inhibitory control. R Soc Open Sci. 2019;6(1):181186 This pre-registered study performed in a robust sample size challenges the idea that prefrontal stimulation can modulate food craving, food consumption, or inhibitory control.

    PubMed  PubMed Central  Google Scholar 

  85. Oliva R, Morys F, Horstmann A, Castiello U, Begliomini C. Characterizing impulsivity in normal-weight binge eaters: a resting-state functional MRI study.

  86. Stopyra MA, Simon JJ, Skunde M, Walther S, Bendszus M, Herzog W, et al. Altered functional connectivity in binge eating disorder and bulimia nervosa: a resting-state fMRI study. Brain Behav. 2019;9(2):e01207.

    PubMed  PubMed Central  Google Scholar 

  87. Baek K, Morris LS, Kundu P, Voon V. Disrupted resting-state brain network properties in obesity: decreased global and putaminal cortico- striatal network efficiency. Psychol Med. 2017 Mar;47(4):585–96.

    CAS  PubMed  Google Scholar 

  88. Morys F, Bode S, Horstmann A. Dorsolateral and medial prefrontal cortex mediate the influence of incidental priming on economic decision making in obesity. Sci Rep. 2018;8(1):17595.

    PubMed  PubMed Central  Google Scholar 

  89. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    PubMed  Google Scholar 

  90. Haedt-Matt AA, Keel PK. Revisiting the affect regulation model of binge eating: a meta-analysis of studies using ecological momentary assessment. Psychol Bull. 2011;137(4):660–81.

    PubMed  PubMed Central  Google Scholar 

  91. Svaldi J, Werle D, Naumann E, Eichler E, Berking M. Prospective associations of negative mood and emotion regulation in the occurrence of binge eating in binge eating disorder. J Psychiatr Res. 2019;115:61–8.

    PubMed  Google Scholar 

  92. Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol. 2014;5(May):434.

    PubMed  PubMed Central  Google Scholar 

  93. Lyu Z, Jackson T. Acute stressors reduce neural inhibition to food cues and increase eating among binge eating disorder symptomatic women. Front Behav Neurosci. 2016;10(OCT):188.

    PubMed  PubMed Central  Google Scholar 

  94. Schulte EM, Grilo CM, Gearhardt AN. Shared and unique mechanisms underlying binge eating disorder and addictive disorders. Clin Psychol Rev. 2016;44:125–39.

    PubMed  PubMed Central  Google Scholar 

  95. Lowe CJ, Staines WR, Mannochio F, Hall PA. The neurocognitive mechanisms underlying food cravings and snack food consumption. A combined continuous theta burst stimulation (cTBS) and EEG study. Neuroimage. 2018;177(May):45–58.

    PubMed  Google Scholar 

  96. García-García I, Horstmann A, Jurado MA, Garolera M, Chaudhry SJ, Margulies DS, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15(11):853–69.

    PubMed  Google Scholar 

  97. Hsu JS, Wang PW, Ko CH, Hsieh TJ, Chen CY, Yen JY. Altered brain correlates of response inhibition and error processing in females with obesity and sweet food addiction: a functional magnetic imaging study. Obes Res Clin Pract. 2017;11(6):677–86.

    PubMed  Google Scholar 

  98. Gilmore RO, Diaz MT, Wyble BA, Yarkoni T. Progress toward openness, transparency, and reproducibility in cognitive neuroscience. Ann N Y Acad Sci. 2017:5–18.

Download references

Funding

IGG is supported by a Postdoctoral Fellowship from the Canadian Institutes of Health Research. AD is funded by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel García-García.

Ethics declarations

Conflict of Interest

IGG, FM, AM, and AD conduct research on the neural correlates of food addiction and obesity and are the authors of some of the studies cited in the current review. Other than that, the authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any data analysis with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-García, I., Morys, F., Michaud, A. et al. Food Addiction, Skating on Thin Ice: a Critical Overview of Neuroimaging Findings. Curr Addict Rep 7, 20–29 (2020). https://doi.org/10.1007/s40429-020-00293-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-020-00293-0

Keywords

Navigation