Skip to main content
Log in

Anatomical changes induced by salinity stress in Salicornia freitagii (Amaranthaceae)

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

A salt-tolerant population of Salicornia freitagii Yaprak and Yurdakulol (naturally adapted) from saline soils of Bahşili village, Sungurlu, Çorum, Turkey, was evaluated for root and succulent stem modifications. Salt-tolerant populations from low (2.3 dS m−1), medium (20.7 dS m−1) and highly (46.3 dS m−1) saline soils were collected for comparisons. Decreased parenchyma in roots is critical for enhancing water loss. However, the thickness of parenchyma in roots of S. freitagii collected from the edge of the stream was not more affected by the increase in salinity levels. Stem anatomical characters as thickness, length and width of water-storing tissue significantly increased in highly saline environments. The thickness of xylem and the diameter of the vessels decreased at higher salinity. There was an increase in the diameter of pith in stem with increasing salt levels. Additionally, it was observed that stomatal index was considerably reduced under high salinity. Our results report root and stem anatomical features of S. freitagii resulting from adaptation to salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–6

Similar content being viewed by others

References

  • Akcin TA, Akcin A, Yalcin E (2015) Anatomical adaptations to salinity in Spergularia marina (Caryophyllaceae) from Turkey. Proc Natl Acad Sci India Sect B Biol Sci 85:625–634

    Article  Google Scholar 

  • Akram M, Akhtar S, Javed IH, Wahid A, Rasul E (2002) Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. Int J Agric Biol 4:166–168

    Google Scholar 

  • Anderson CE (1974) A review of structure in several north Narolina salt marsh plants. In: Reimold RJ, Queen WH (eds) Ecology of Halophytes. Academic Press, New York, pp 307–344

    Chapter  Google Scholar 

  • Baloch AH, Gates PJ, Baloch V (1998) Anatomical changes brought about by salinity in stem, leaf and root of Arabidopsis thaliana (L.) Heynh (thale cress). Sarhad J Agric 14:131–142

    Google Scholar 

  • Boughalleb F, Denden M, Ben TB (2009) Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiol Plant 31:947–960

    Article  Google Scholar 

  • Bray S, Reid DM (2002) The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Can J Bot 80:349–359

    Article  Google Scholar 

  • Cavusoglu K, Kılıc S, Kabar K (2007) Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol Plant 29:551–557

    Article  CAS  Google Scholar 

  • Cavusoglu K, Kılıc S, Kabar K (2008) Effects of some plant growth regulators on leaf anatomy of radish seedlings grown under saline conditions. J Appl Biol Sci 2:47–50

    Google Scholar 

  • Ceccoli G, Ramos JC, Ortega LI, Acosta JM, Perreta MG (2011) Salinity induced anatomical and morphological changes in Chloris gayana roots. Biocell 35:9–17

    PubMed  Google Scholar 

  • Choat B, Ball MC, Luly JG, Holtum JAM (2005) Hydraulic architecture of deciduous and evergreen dry forest tree species from north-eastern Australia. Trees (Berl) 19:305–311

    Article  Google Scholar 

  • Cooke FW (1911) Observation on Salicornia australis. Trans Proc New Zeal Inst 44:349–362

    Google Scholar 

  • Curtis PS, Lauchli A (1987) The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (Kenaf) and its relation to leaf area. Am J Bot 74:538–542

    Article  CAS  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavenda AS, Janardhan RK (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99

  • Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusila J. Woods, S. ramosissima Woods, S.europaea L., S. obscura PW Ball and Tutin, S. fragilis PW Ball and Tutin and S. dolichostachya Moss). J Ecol 89:681–707

    Article  Google Scholar 

  • De Frain E (1912) The anatomy of genus Salicornia. J Linn Sec Bot 41:317–348

    Article  Google Scholar 

  • Debez A, Saadaoui D, Ramanib B, Ouerghi Z, Koyro HW, Huchzermeyer B, Abdelly C (2006) Leaf H-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    Article  CAS  Google Scholar 

  • Fahn A (1972) Plant anatomy. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 4:204–218

    Google Scholar 

  • Grigore MN, Toma C (2008) Ecological anatomy investigation related to some halophyte species from Moldovia. Plant Biol 53:23–30

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the salt range. Pak Plant Soil 322:229–238

    Article  CAS  Google Scholar 

  • Hameed M, Ashraf M, Naz N, Al-Qurainy F (2010) Anatomical adaptations of Cynodon dactylon (L.) Pers., from the salt range Pakistan, to salinity stress. I. Root and stem anatomy. Pak J Bot 42:279–289

    Google Scholar 

  • Huang J, Redman RE (1995) Response of growth, morphology and anatomy to salinity and calcium supply in cultivated and wild barley. Can J Bot 73:1859–1866

    Article  CAS  Google Scholar 

  • Hwang YH, Chen SC (1995) Anatomical responses in Kandelia candel (L.) druce seedlings growing in the presence of different concentrations of NaCI. Bot Bull Acad Sin 36:181–188

    CAS  Google Scholar 

  • Keshavarzi M, Zare G (2006) Anatomical study of Salicornieae Dumort. (Chenopodiaceae Vent.) native to Iran. Int J Bot 2:278–285

    Article  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763–2774

    Article  CAS  Google Scholar 

  • Kılıç S, Cavusoglu K, Kabar K (2007) Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. Suleyman Demirel Univ Fac Art Sci J Sci 2:41–52

    Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago cronopus (L.). Environ Exp Bot 56:136–146

    Article  CAS  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 1–19

    Google Scholar 

  • Meidner H, Mansfield TA (1968) Physiology of stomata. Mc Graw-Hill, London

    Google Scholar 

  • Neumann P (1995) Inhibition of root growth by salinity stress: toxicity or an adaptive biophysical response. In: Baluska F, Ciamporová M, Gasparikova MO, Barlow PW (eds) Structure and function of roots. Academic Kluwer Publishers, Dordrecht, pp 299–304

    Chapter  Google Scholar 

  • Polic D, Lukovic J, Zoric´i L, Boza P, Merkulov L, Knezevic´ A (2009) Morpho-anatomical differentiation of Suaeda maritima (L.) Dumort. (Chenopodiaceae) populations from inland and maritime saline area. Cent Eur J Biol 4:117–129

    Google Scholar 

  • Ramos J, Perreta MG, Tivano JC, Vegetti AC (2004) Variaciones anatómicas en la raíz de Pappophorum philippianum inducidas por salinidad. Phyton 73:103–109

    Google Scholar 

  • Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedlings roots. Environ Exp Bot 35:563–574

    Article  CAS  Google Scholar 

  • Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombu- lifera (Leguminosae). Can J Bot 82:618–628

    Article  Google Scholar 

  • Rhee MH, Park HJ, Cho JY (2009) Salicornia herbacea: botanical, chemical and pharmacological review of halophyte marsh plant. J Med Plant Res 3:548–555

    CAS  Google Scholar 

  • Robert EMR, Schmitz N, Boeren I, Driessens T, Herremans K, De Mey J, Van de Casteele E, Beeckman H, Koedam N (2011) Successive cambia: A developmental oddity or an adaptive structure? PLoS One 6:1–10

    Article  Google Scholar 

  • Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and iso- lated chloroplasts of salt-stressed spinach. Plant Physiol 73:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon MC, Grieve CM, Francois LE (1994) Whole plant response to salinity. In: Wilkinson RE, (ed) Plant environment interaction. Marcel Dekker, New York, pp 199–244

    Google Scholar 

  • Sidari M, Muscolo A, Anastasi U, Preiti G, Santonoceto C (2008) Variations in four genotypes of lentil under NaCl-salinity stress. Am J Agric Biol Sci 3:410–416

    Article  Google Scholar 

  • Soil Survey Staff (1996) Soil survey laboratory manual USDA-SCS National Soil Survey Center Soil Survey Investigations Report 42. Version 3, Us Government Printing Office, Washington DC

  • Strogonov BP (1962) Physiological basis of salt tolerance of plants. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Ungar IA (1991) Ecophysiology of vascular halophytes. CRC Press, Vera-Estrella, Boca Raton

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD (2008) NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regul 56:61–69

    Article  CAS  Google Scholar 

  • Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan flora. Int J Agric Biol 5:207–212

    Google Scholar 

  • Yaprak AE, Yurdakulol E (2008) Salicornia freitagii (Chenopodiaceae), a new species from Turkey. Ann Bot Fenn 45:207–211

    Article  Google Scholar 

  • Zhao KF, Fan H, Jiang XY, Zhou S (2002) Critical day-length and photoinductive cycles for the induction of flowering in halophyte Suaeda salsa. Plant Sci 162:27–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulay Aytas Akcin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akcin, T.A., Akcin, A. & Yalcın, E. Anatomical changes induced by salinity stress in Salicornia freitagii (Amaranthaceae). Braz. J. Bot 40, 1013–1018 (2017). https://doi.org/10.1007/s40415-017-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0393-0

Keywords

Navigation