Skip to main content
Log in

Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems

Calcium-induced cadmium stress tolerance in rice

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate the regulatory role of exogenous application of calcium (Ca) in enhancing the antioxidant defense and glyoxalase systems in mitigating cadmium (Cd) stress in rice. Hydroponically grown 14-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.25 and 0.5 mM CdCl2 alone and in combination with 2.5 mM CaCl2 for 3 days. Exposure to Cd caused chlorosis, leaf rolling symptoms, and growth inhibition. A higher concentration of Cd in the growth medium resulted in higher Cd accumulation, which induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense system. Cadmium treatment increased the methylglyoxal (MG) level. Calcium supplementation in the Cd-treated growth medium reduced Cd uptake. Application of Ca also significantly increased the (ascorbate) AsA content, increased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) in the antioxidant system, and increased the glyoxalase I (Gly I) and glyoxalase II (Gly II) activities in the glyoxalase system in rice seedlings exposed to both levels of Cd. Exogenous Ca application regulated the antioxidant defense and glyoxalase systems, which reversed overproduced ROS and detoxified MG, which in turn reduced Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AO:

Ascorbate oxidase

APX:

Ascorbate peroxidase

AsA:

Ascorbate

BSA:

Bovine serum albumin

Cd:

Cadmium

Ca:

Calcium

CAT:

Catalase

CDNB:

1-Chloro-2,4-dinitrobenzene

Chl:

Chlorophyll

DAB:

Diaminobenzidine

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

DTNB:

5,5′-Dithio-bis-(2-nitrobenzoic) acid

EDTA:

Ethylenediaminetetraacetic acid

Gly:

Glyoxalase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GPX:

Glutathione peroxidase

GST:

Glutathione S-transferase

LOX:

Lipoxygenase

MDA:

Malondialdehyde

MDHA:

Monodehydroascorbate

MDHAR:

Monodehydroascorbate reductase

MG:

Methylglyoxal

NADPH:

Nicotinamide adenine dinucleotide phosphate

NBT:

Nitroblue tetrazolium chloride

NTB:

2-Nitro-5-thiobenzoic acid

Pro:

Proline

ROS:

Reactive oxygen species

SLG:

S-d-Lactoyl-glutathione

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Addinsoft (2013) XLSTAT 2013: data analysis and statistics software for microsoft excel. Addinsoft, Paris

    Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1):e0114571. doi:10.1371/journal.pone.0114571

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) by upregulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) Effects of temperature on oxidative stress defense systems: lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Commun Soil Sci Plant Anal 39:2469–2483

    Article  CAS  Google Scholar 

  • Arnon DT (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banu MNA, Hoque MA, Watamable-Sugimoto M, Islam MA, Uraji M, Matsuoka M, Nakamura Y, Murata Y (2010) Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Biosci Biotechnol Biochem 10:2043–2049

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhat NA, Mir AH, Lal EP, Rather MA (2014) Antagonistic effect of calcium (Ca2+) on cadmium (Cd) viz. chlorophyll, protein and oil yield of mustard plant (Brassica juncea L.) var. pusa bold. Int J Dev Res 4:683–687

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaplen FWR (1998) Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture. Cytotechnology 26:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR (1985) Displacement of Ca2+ and Na+ form the plasma lemma of root cells. Plant Physiol 79:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L (2010) Oxidative stress and aging: Is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88:273–284

    Article  CAS  PubMed  Google Scholar 

  • Doderer A, Kokkelink I, Van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104

    Article  Google Scholar 

  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photo respiratory conditions and during transients. Plant Physiol 131:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    Article  CAS  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH (2003) Ascorbate and glutathione metabolism in plants: H2O2-processing and signalling. In: Gitler C, Danon A (eds) Cellular implications of redox signaling. Imperial College Press, London, pp 191–212

    Chapter  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394

    Article  CAS  Google Scholar 

  • Griffiths OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012a) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012b) Exogenous selenium pretreatment protects rapeseed from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res. doi:10.1155/2014/757219

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Plant Mol Biol 51:463–499

    CAS  Google Scholar 

  • He JY, Ren YF, Wang FJ, Pan XB, Zhu C, Jiang DA (2009) Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. sp. japonica). Arch Environ Contam Toxicol 57:299–306

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photo peroxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MZ, Hossain MD, Fujita M (2006) Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms. Biol Plant 50:210–218

    Article  CAS  Google Scholar 

  • Macri F, Braidot E, Petrusa E, Vianello A (1994) Lipoxygenase activity associated to isolated soybean plasmamembranes. Biochim Biophys Acta 1215:109–114

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 209–229

    Chapter  Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Somasundaram R, Murali PV, Sridharan R, Panneerselvam R (2007) Salt stress mitigation by calcium chloride in Vigna radiata (L.) wilczek. Acta Biol Cracoviensia Ser Bot 49:105–109

    Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress: antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defense and methylglyoxal detoxification systems. AoB Plants. doi:10.1093/aobpla/plv069

    PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MA, Fujita M (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:283–304

    Google Scholar 

  • Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Heidelberg, pp 231–245

    Chapter  Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–112

    Chapter  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavassecur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus). J Plant Physiol 171:85–91

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Casas P, Klesseg DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    PubMed  PubMed Central  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Saxena M, Deb Roy S, Singla-Pareek S-L, Sopory SK, Bhalla-Sarin N (2011) Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice exposed to toxic levels of aluminium. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Shah K (2014) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice. Phytochemistry 108:57–66

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS (2014) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice. Protoplasma 252:959–975

    Article  PubMed  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Talukdar D (2012) Exogenous calcium alleviates the impact of cadmium induced oxidative stress in Lens culinaris Medic. through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol 15:325–334

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69

    Article  CAS  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu J, Wu L (2009) Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem Pharmacol 77:1709–1716

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild R, Ooi L, Srikanth V, Münch G (2012) A quick: convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-l-cysteine assay. Anal Bioanal Chem 403:2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18:486–495

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11:1–11

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We thank Mr. Dennis Murphy, United Graduate School of Agricultural Sciences, Ehime University, Japan, for a critical review and editing the English of the manuscript. We also thank Mr. Shahadat Hossain and Mr. Jubayer-Al-Mahmud, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan, for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Mostofa, M.G., Nahar, K. et al. Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz. J. Bot 39, 393–407 (2016). https://doi.org/10.1007/s40415-015-0240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0240-0

Keywords

Navigation