Skip to main content

Advertisement

Log in

Emerging applications of imaging in glioma: focus on PET/MRI and radiomics

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

In the last years, it has emerged the unmet need for imaging technologies able to accurately describe the biological and clinical heterogeneity of glioma, assess responsiveness to therapy, and predict patient outcomes. The increasing number of additional imaging parameters primarily derived from advanced Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), the technical developments of hybrid PET/MRI scanners, and the use of artificial intelligence might be able to fill this gap. In the present narrative review, we analyzed the potential of radiomics features extracted from stand-alone PET/MRI or combined PET and MRI scanners in the assessment of glioma.

Methods

PubMed, Embase, and Web of Science were searched for articles published up to January 2021 using the following keywords: “PET/MRI AND glioma”, “PET/MRI AND glioblastoma”, “PET/MRI AND radiomics AND glioma”, “PET/MRI AND radiomics AND glioblastoma”. We included only original articles published in English reporting the use of PET/MRI or PET/MRI-derived radiomics features (extracted either from PET or MRI scanner or hybrid PET/MRI device) in patients with glioma.

Results

Published data suggest that hybrid PET/MRI may be superior to MRI-alone in differentiating low-grade vs. high-grade glioma, in detecting malignant transformation of LGG, and in the differential diagnosis between true recurrences from post-treatment changes. Moreover, PET/MRI could add helpful information for radiotherapy and surgery planning. Also, the rapid advancement in computer-based image analysis including artificial intelligence and radiomics has extended to PET imaging in the last years, with promising results particularly in the setting of preoperative imaging and in the post-treatment setting.

Conclusions

Published literature suggests a high potential for PET/MRI-derived radiomics. However, these results are based on small datasets and need to be further investigated in large prospective studies. Multidisciplinary efforts and multicenter collaborations will be essential to achieve these aims in the next future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. la Fougère C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13:806–819. https://doi.org/10.1093/neuonc/nor054

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD et al (2014) GBM’s multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 16:1167–1175. https://doi.org/10.1093/neuonc/nou035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12:862–866. https://doi.org/10.1016/j.jacr.2015.04.019

    Article  PubMed  Google Scholar 

  4. Quartuccio N, Laudicella R, Vento A, Pignata S, Mattoli MV, Filice R et al (2020) The additional value of (18)F-FDG PET and MRI in patients with glioma: a review of the literature from 2015 to 2020. Diagnostics (Basel, Switzerland) 10:357. https://doi.org/10.3390/diagnostics10060357

    Article  CAS  Google Scholar 

  5. Marner L, Henriksen OM, Lundemann M, Larsen VA, Law I (2017) Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 5:135–149. https://doi.org/10.1007/s40336-016-0213-8

    Article  PubMed  Google Scholar 

  6. Deuschl C, Goericke S, Grueneisen J, Sawicki LM, Goebel J, El Hindy N et al (2016) Simultaneous 11C-methionine positron emission tomography/magnetic resonance imaging of suspected primary brain tumors. PLOS ONE 11:e0167596. https://doi.org/10.1371/journal.pone.0167596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deuschl C, Moenninghoff C, Goericke S, Kirchner J, Köppen S, Binse I et al (2017) Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study. Eur J Nucl Med Mol Imaging 44:1285–1295. https://doi.org/10.1007/s00259-017-3661-0

    Article  CAS  PubMed  Google Scholar 

  8. Shaw TB, Jeffree RL, Thomas P, Goodman S, Debowski M, Lwin Z et al (2019) Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of glioma. J Med Imaging Radiat Oncol 63:650–656. https://doi.org/10.1111/1754-9485.12929

    Article  PubMed  Google Scholar 

  9. Verburg N, Koopman T, Yaqub MM, Hoekstra OS, Lammertsma AA, Barkhof F et al (2020) Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 22:412–422. https://doi.org/10.1093/neuonc/noz180

    Article  CAS  PubMed  Google Scholar 

  10. Deuschl C, Kirchner J, Poeppel TD, Schaarschmidt B, Kebir S, El Hindy N et al (2018) (11)C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 45:593–601. https://doi.org/10.1007/s00259-017-3916-9

    Article  CAS  PubMed  Google Scholar 

  11. Karlberg A, Berntsen EM, Johansen H, Skjulsvik AJ, Reinertsen I, Dai HY et al (2019) 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas. Clin Nucl Med 44:550–559. https://doi.org/10.1097/RLU.0000000000002610

    Article  PubMed  Google Scholar 

  12. Brendle C, Hempel JM, Schittenhelm J, Skardelly M, Reischl G, Bender B et al (2018) Glioma grading by dynamic susceptibility contrast perfusion and (11)C-methionine positron emission tomography using different regions of interest. Neuroradiology 60:381–389. https://doi.org/10.1007/s00234-018-1993-5

    Article  PubMed  Google Scholar 

  13. Göttler J, Lukas M, Kluge A, Kaczmarz S, Gempt J, Ringel F et al (2017) Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma. Eur J Nucl Med Mol Imaging 44:392–397. https://doi.org/10.1007/s00259-016-3585-0

    Article  CAS  PubMed  Google Scholar 

  14. Zhang K, Langen KJ, Neuner I, Stoffels G, Filss C, Galldiks N et al (2014) Relationship of regional cerebral blood flow and kinetic behaviour of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in cerebral gliomas. Nucl Med Commun 35:245–251. https://doi.org/10.1097/mnm.0000000000000036

    Article  PubMed  Google Scholar 

  15. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M et al (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48:295–301. https://doi.org/10.1097/RLI.0b013e31827188d6

    Article  CAS  PubMed  Google Scholar 

  16. Mauler J, Maudsley AA, Langen KJ, Nikoubashman O, Stoffels G, Sheriff S et al (2018) Spatial relationship of glioma volume derived from (18)F-FET PET and volumetric MR spectroscopy imaging: a hybrid PET/MRI study. J Nucl Med 59:603–609. https://doi.org/10.2967/jnumed.117.196709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B et al (2014) Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55:540–545. https://doi.org/10.2967/jnumed.113.129007

    Article  CAS  PubMed  Google Scholar 

  18. Henriksen OM, Larsen VA, Muhic A, Hansen AE, Larsson HBW, Poulsen HS et al (2016) Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [(18)F]-fluoroethyltyrosine (FET) PET/MRI: feasibility, agreement and initial experience. Eur J Nucl Med Mol Imaging 43:103–112. https://doi.org/10.1007/s00259-015-3183-6

    Article  CAS  PubMed  Google Scholar 

  19. Jena A, Taneja S, Jha A, Damesha NK, Negi P, Jadhav GK et al (2017) Multiparametric evaluation in differentiating glioma recurrence from treatment-induced necrosis using simultaneous (18)F-FDG-PET/MRI: a single-institution retrospective study. Am J Neuroradiol 38:899–907. https://doi.org/10.3174/ajnr.A5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galldiks N, Langen KJ (2016) Amino acid PET—an imaging option to identify treatment response, posttherapeutic effects, and tumor recurrence? Front Neurol 7:120. https://doi.org/10.3389/fneur.2016.00120

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L (2010) Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol 48:81–92

    PubMed  Google Scholar 

  22. Pyka T, Hiob D, Preibisch C, Gempt J, Wiestler B, Schlegel J et al (2018) Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol 103:32–37. https://doi.org/10.1016/j.ejrad.2018.04.003

    Article  PubMed  Google Scholar 

  23. Hojjati M, Badve C, Garg V, Tatsuoka C, Rogers L, Sloan A et al (2018) Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion mri in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging Off J Am Soc Neuroimaging 28:118–125. https://doi.org/10.1111/jon.12460

    Article  Google Scholar 

  24. Pyatigorskaya N, Sgard B, Bertaux M, Yahia-Cherif L, Kas A (2021) Can FDG-PET/MR help to overcome limitations of sequential MRI and PET-FDG for differential diagnosis between recurrence/progression and radionecrosis of high-grade gliomas? J Neuroradiol 48:189–194. https://doi.org/10.1016/j.neurad.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  25. Lohmeier J, Bohner G, Siebert E, Brenner W, Hamm B, Makowski MR (2019) Quantitative biparametric analysis of hybrid (18)F-FET PET/MR-neuroimaging for differentiation between treatment response and recurrent glioma. Sci Rep 9:14603. https://doi.org/10.1038/s41598-019-50182-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lundemann M, Munck AF, Rosenschöld P, Muhic A, Larsen VA, Poulsen HS, Engelholm SA et al (2019) Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 46:603–613. https://doi.org/10.1007/s00259-018-4180-3

    Article  PubMed  Google Scholar 

  27. Song S, Cheng Y, Ma J, Wang L, Dong C, Wei Y et al (2020) Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 47:1458–1467. https://doi.org/10.1007/s00259-019-04656-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song S, Wang L, Yang H, Shan Y, Cheng Y, Xu L et al (2021) Static (18)F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status. Eur Radiol 31:4087–4096. https://doi.org/10.1007/s00330-020-07470-9

    Article  CAS  PubMed  Google Scholar 

  29. Fleischmann DF, Unterrainer M, Corradini S, Rottler M, Förster S, la Fougère C et al (2019) Report of first recurrent glioma patients examined with PET-MRI prior to re-irradiation. PLOS ONE 14:e0216111. https://doi.org/10.1371/journal.pone.0216111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sogani SK, Jena A, Taneja S, Gambhir A, Mishra AK, D’Souza MM et al (2017) Potential for differentiation of glioma recurrence from radionecrosis using integrated (18)F-fluoroethyl-L-tyrosine (FET) positron emission tomography/magnetic resonance imaging: A prospective evaluation. Neurol India 65:293–301. https://doi.org/10.4103/neuroindia.NI_101_16

    Article  PubMed  Google Scholar 

  31. Barajas RF, Krohn KA, Link JM, Hawkins RA, Clarke JL, Pampaloni MH et al (2016) Glioma FMISO PET/MR imaging concurrent with antiangiogenic therapy: molecular imaging as a clinical tool in the burgeoning era of personalized medicine. Biomedicines. https://doi.org/10.3390/biomedicines4040024

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laudicella R, Comelli A, Stefano A, Szostek M, Crocè L, Vento A et al (2020) Artificial neural networks in cardiovascular diseases and its potential for clinical application in molecular imaging. Curr Radiopharm. https://doi.org/10.2174/1874471013666200621191259

    Article  PubMed  Google Scholar 

  33. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  34. Naqa IE (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Trans Imaging 2:305–320. https://doi.org/10.1007/s40336-014-0063-1

    Article  Google Scholar 

  35. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res Off J Am Assoc Cancer Res 21:249–257. https://doi.org/10.1158/1078-0432.ccr-14-0990

    Article  CAS  Google Scholar 

  36. Rubin MA (2015) Health: make precision medicine work for cancer care. Nature 520:290–291. https://doi.org/10.1038/520290a

    Article  CAS  PubMed  Google Scholar 

  37. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (New York, NY) 321:1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  Google Scholar 

  38. Eichinger P, Alberts E, Delbridge C, Trebeschi S, Valentinitsch A, Bette S et al (2017) Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 7:13396. https://doi.org/10.1038/s41598-017-13679-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467. https://doi.org/10.1038/s41598-017-05848-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117. https://doi.org/10.1093/neuonc/now121

    Article  CAS  PubMed  Google Scholar 

  41. Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T et al (2018) Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 8:13328. https://doi.org/10.1038/s41598-018-31806-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haubold J, Demircioglu A, Gratz M, Glas M, Wrede K, Sure U et al (2020) Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric (18)F-FET PET-MRI and MR fingerprinting. Eur J Nucl Med Mol Imaging 47:1435–1445. https://doi.org/10.1007/s00259-019-04602-2

    Article  CAS  PubMed  Google Scholar 

  43. Kebir S, Weber M, Lazaridis L, Deuschl C, Schmidt T, Monninghoff C et al (2019) Hybrid 11C-MET PET/MRI combined with “machine learning” in glioma diagnosis according to the revised glioma WHO classification 2016. Clin Nucl Med 44:214–220. https://doi.org/10.1097/rlu.0000000000002398

    Article  PubMed  Google Scholar 

  44. Li L, Mu W, Wang Y, Liu Z, Liu Z, Wang Y et al (2019) A non-invasive radiomic method using (18)F-FDG PET predicts isocitrate dehydrogenase genotype and prognosis in patients with glioma. Front Oncol 9:1183. https://doi.org/10.3389/fonc.2019.01183

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK et al (2015) Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 276:313. https://doi.org/10.1148/radiol.2015154019

    Article  PubMed  Google Scholar 

  46. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54:19–26. https://doi.org/10.2967/jnumed.112.107375

    Article  PubMed  Google Scholar 

  47. Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M et al (2018) Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, Ex Vivo features, and patient features by supervised machine learning. J Nucl Med 59:892–899. https://doi.org/10.2967/jnumed.117.202267

    Article  CAS  PubMed  Google Scholar 

  48. Kong Z, Li J, Liu Z, Liu Z, Zhao D, Cheng X et al (2019) Radiomics signature based on FDG-PET predicts proliferative activity in primary glioma. Clin Radiol. https://doi.org/10.1016/j.crad.2019.06.019

    Article  PubMed  Google Scholar 

  49. Wang K, Qiao Z, Zhao X, Li X, Wang X, Wu T et al (2020) Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur J Nucl Med Mol Imaging 47:1400–1411. https://doi.org/10.1007/s00259-019-04604-0

    Article  CAS  PubMed  Google Scholar 

  50. Muzi M, Wolsztynski E, Fink JR, O’Sullivan JN, O’Sullivan F, Krohn KA et al (2020) Assessment of the prognostic value of radiomic features in (18)F-FMISO PET imaging of hypoxia in postsurgery brain cancer patients: secondary analysis of imaging data from a single-center study and the multicenter ACRIN 6684 trial. Tomography (Ann Arbor, Mich) 6:14–22. https://doi.org/10.18383/j.tom.2019.00023

    Article  Google Scholar 

  51. Kong Z, Lin Y, Jiang C, Li L, Liu Z, Wang Y et al (2019) (18)F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma. Cancer Imaging 19:58. https://doi.org/10.1186/s40644-019-0246-0

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu P, Ning J, Xu B, Liu J, Dang H, Lin M et al (2019) Histogram analysis of 11C-methionine integrated PET/MRI may facilitate to determine the O6-methylguanylmethyltransferase methylation status in gliomas. Nucl Med Commun 40:850–856. https://doi.org/10.1097/mnm.0000000000001039

    Article  CAS  PubMed  Google Scholar 

  53. Hope TA, Fayad ZA, Fowler KJ, Holley D, Iagaru A, McMillan AB et al (2019) Summary of the first ISMRM-SNMMI workshop on PET/MRI: applications and limitations. J Nucl Med 60:1340–1346. https://doi.org/10.2967/jnumed.119.227231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian J, Herman MG, Brinkmann DH, Laack NN, Kemp BJ, Hunt CH et al (2020) Prediction of MGMT status for glioblastoma patients using radiomics feature extraction from (18)F-DOPA-PET imaging. Int J Radiat Oncol Biol Phys 108:1339–1346. https://doi.org/10.1016/j.ijrobp.2020.06.073

    Article  PubMed  Google Scholar 

  55. Imani F, Boada FE, Lieberman FS, Davis DK, Mountz JM (2014) Molecular and metabolic pattern classification for detection of brain glioma progression. Eur J Radiol 83:e100–e105. https://doi.org/10.1016/j.ejrad.2013.06.033

    Article  PubMed  Google Scholar 

  56. Hotta M, Minamimoto R, Miwa K (2019) 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 9:15666. https://doi.org/10.1038/s41598-019-52279-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kebir S, Weber M, Lazaridis L, Deuschl C, Schmidt T, Mönninghoff C et al (2019) Hybrid 11C-MET PET/MRI combined with “machine learning” in glioma diagnosis according to the revised glioma WHO classification 2016. Clin Nucl Med 44:214–220. https://doi.org/10.1097/rlu.0000000000002398

    Article  PubMed  Google Scholar 

  58. Liesche F, Lukas M, Preibisch C, Shi K, Schlegel J, Meyer B et al (2019) (18)F-Fluoroethyl-tyrosine uptake is correlated with amino acid transport and neovascularization in treatment-naive glioblastomas. Eur J Nucl Med Mol Imaging 46:2163–2168. https://doi.org/10.1007/s00259-019-04407-3

    Article  CAS  PubMed  Google Scholar 

  59. Rogasch JMM, Albers J, Steinkrüger FL, Lukas M, Wedel F, Amthauer H et al (2019) Point spread function reconstruction for integrated 18F-FET PET/MRI in patients with glioma: does it affect SUVs and respective tumor-to-background ratios? Clin Nucl Med 44:e280–e285. https://doi.org/10.1097/rlu.0000000000002423

    Article  PubMed  Google Scholar 

  60. Sacconi B, Raad RA, Lee J, Fine H, Kondziolka D, Golfinos JG et al (2016) Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging. J Neurooncol 127:287–293. https://doi.org/10.1007/s11060-015-2032-6

    Article  CAS  PubMed  Google Scholar 

  61. Seligman L, Kovanlikaya I, Pisapia DJ, Naeger DM, Magge R, Fine HA et al (2019) Integrated PET-MRI for glioma surveillance: perfusion-metabolism discordance rate and association with molecular profiling. Am J Roentgenol 212:883–891. https://doi.org/10.2214/ajr.18.20531

    Article  Google Scholar 

  62. Ferda J, Ferdová E, Hes O, Mraček J, Kreuzberg B, Baxa J (2017) PET/MRI: multiparametric imaging of brain tumors. Eur J Radiol 94:A14-a25. https://doi.org/10.1016/j.ejrad.2017.02.034

    Article  PubMed  Google Scholar 

  63. Laudicella R, Baratto L, Minutoli F, Baldari S, Iagaru A (2020) Malignant cutaneous melanoma: updates in PET imaging. Curr Radiopharm 13:14–23. https://doi.org/10.2174/1874471012666191015095550

    Article  CAS  PubMed  Google Scholar 

  64. Fink JR, Muzi M, Peck M, Krohn KA (2015) Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl Med 56:1554–1561. https://doi.org/10.2967/jnumed.113.131516

    Article  CAS  PubMed  Google Scholar 

  65. Aasheim LB, Karlberg A, Goa PE, Håberg A, Sørhaug S, Fagerli UM et al (2015) PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging 42:1439–1446. https://doi.org/10.1007/s00259-015-3060-3

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially sustained by a grant from the “Sick Foundation” and “Jimmy Wirth Foundation”.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Lea Cuppari.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest related to this review.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laudicella, R., Bauckneht, M., Cuppari, L. et al. Emerging applications of imaging in glioma: focus on PET/MRI and radiomics. Clin Transl Imaging 9, 609–623 (2021). https://doi.org/10.1007/s40336-021-00464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00464-7

Keywords

Navigation