Skip to main content

Advertisement

Log in

A glance at imaging bladder cancer

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Early and accurate diagnosis of bladder cancer (BCa) will contribute extensively to the management of the disease. The purpose of this review was to briefly describe the conventional imaging methods and other novel imaging modalities used for early detection of BCa and outline their pros and cons.

Methods

Literature search was performed on Pubmed, PMC, and Google scholar for the period of January 2014 to February 2018 and using such words as “bladder cancer, bladder tumor, bladder cancer detection, diagnosis and imaging”.

Results

A total of 81 published papers were retrieved and are included in the review. For patients with hematuria and suspected of BCa, cystoscopy, and CT are most commonly recommended. Ultrasonography, MRI, PET/CT using 18F-FDG, or 11C-choline and recently PET/MRI using 18F-FDG also play a prominent role in detection of BCa.

Conclusion

For initial diagnosis of BCa, cystoscopy is generally performed. However, cystoscopy cannot accurately detect carcinoma in situ and cannot distinguish benign masses from malignant lesions. CT is used in two modes, CT and computed tomographic urography, both for diagnosis and for staging of BCa. However, they cannot differentiate T1 and T2 BCa. MRI is performed to diagnose invasive BCa and can differentiate muscle invasive bladder carcinoma from non-muscle invasive bladder carcinoma. However, CT and MRI have low sensitivity for nodal staging. For nodal staging, PET/CT is preferred. PET/MRI provides a better differentiation of normal and pathologic structures as compared with PET/CT. Nonetheless none of the approaches can address all issues related for the management of BCa. Novel imaging methods that target specific biomarkers, image BCa early and accurately, and stage the disease are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUA:

American urological association

BCa:

Bladder cancer

11C:

11Carbon

CEUS:

Contrast-enhanced ultrasonography

CECT:

Contrast-enhanced computed tomography

CIS:

Carcinoma in situ

CLE:

Confocal laser endomicroscopy

CMP:

Corticomedullary phase

CSD:

Cumulative incidence of cancer-specific death

CT:

Computed tomography

CTU:

Computed tomographic urography

2D US:

Two-dimensional ultrasonography

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

DW-MRI:

Diffusion-weighted magnetic resonance imaging

FC:

Flexible cystoscopy

18F-FDG:

18Fluorine-2-deoxy-2-fluorodeoxyglucose

FP:

False positive

HTS:

Histological T staging

LN:

Lymph node

LNMRI:

Lymphotropic nanoparticle enhanced MRI

mpMRI:

Multiparametric MRI

MRI:

Magnetic resonance imaging

MRU:

Magnetic resonance urography

nADC:

Normalized ADC

NaF:

Sodium fluoride

NBI:

Narrow band imaging

NCNN:

National comprehensive cancer network

NMIBC:

Non-muscle invasive bladder cancer

MIBC:

Muscle invasive bladder cancer

NPV:

Negative predictive value

OCT:

Optical coherence tomography

OS:

Overall survival

RC:

Radical cystectomy

PDD:

Photodynamic diagnosis

PET/CT:

Positron emission tomography/computed tomography

PET/MRI:

Positron emission tomography/magnetic resonance imaging

PPV:

Positive predictive value

SPIES:

Storz professional image enhancement system

SUVmax :

Maximum standardized uptake value

1.5 T:

1.5 Tesla

3 T:

3 Tesla

TURB:

Transurethral resection of bladder

T1W-MRI:

T1-weighted magnetic resonance imaging

T2W-MRI:

T2-weighted magnetic resonance imaging

UTS:

Ultrasound T staging

US:

Ultrasonography

WLC:

White light cystoscopy

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  PubMed  CAS  Google Scholar 

  2. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71:96–108. https://doi.org/10.1016/j.eururo.2016.06.010

    Article  PubMed  Google Scholar 

  3. National Cancer Institute. Surveillance, epidemiology, and end results program. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 1 Nov 2017

  4. Svatek RS, Hollenbeck BK, Holmäng S, Lee R, Kim SP, Stenzl A, Lotan Y (2014) The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol 66:253–262. https://doi.org/10.1016/j.eururo.2014.01.006

    Article  PubMed  Google Scholar 

  5. Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Clark PE, Downs TM, Efstathiou JA, Flaig TW, Friedlander T, Greenberg RE, Guru KA, Hahn N, Herr HW, Hoimes C, Inman BA, Jimbo M, Kader AK, Lele SM, Meeks JJ, Michalski J, Montgomery JS, Pagliaro LC, Pal SK, Patterson A, Plimack ER, Pohar KS, Porter MP, Preston MA, Sexton WJ, Siefker-Radtke AO, Sonpavde G, Tward J, Wile G, Dwyer MA, Gurski LA (2017) Bladder Cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:1240–1267. https://doi.org/10.6004/jnccn.2017.0156

    Article  PubMed  Google Scholar 

  6. National Collaborating Center for Cancer. Bladder cancer: diagnosis and management. https://www.ncbi.nlm.nih.gov/books/NBK305022/pdf/Bookshelf_NBK305022.pdf. Accessed 1 Nov 2017

  7. Sherif A, Garske U, de La Torre M, Thörn M (2006) Hybrid SPECT-CT: an additional technique for sentinel node detection of patients with invasive bladder cancer. Eur Urol 50:83–91. https://doi.org/10.1016/j.eururo.2006.03.002

    Article  PubMed  Google Scholar 

  8. Krajewski W, Zdrojowy R, Wojciechowska J, Kościelska K, Dembowski J, Matuszewski M, Tupikowski K, Małkiewicz B, Kołodziej A (2016) Patient comfort during flexible and rigid cystourethroscopy. Videosurg Miniinv 11:94–97. https://doi.org/10.5114/wiitm.2016.60665

    Article  Google Scholar 

  9. Soubra A, Risk MC (2015) Diagnostics techniques in nonmuscle invasive bladder cancer. Indian J Urol 31:283–288. https://doi.org/10.4103/0970-1591.166449

    Article  PubMed  PubMed Central  Google Scholar 

  10. Degeorge KC, Holt HR, Hodges SC (2017) Bladder cancer: diagnosis and treatment. Am Fam Physician 96:507–514

    PubMed  Google Scholar 

  11. Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA (2018) Computer-assisted cystoscopy diagnosis of bladder cancer. Urol Oncol 36:8.e9–8.e15. https://doi.org/10.1016/j.urolonc.2017.08.026

    Article  Google Scholar 

  12. American Urological Association. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults. https://auanet.org/guidelines/asymptomatic-microhematuria-(2012-reviewed-and-validity-confirmed-2016). Accessed 26 Apr 2018

  13. Mari A, Abufaraj M, Gust KM, Shariat SF (2017) Novel endoscopic visualization techniques for bladder cancer detection: a review of the contemporary literature. Curr Opin Urol. https://doi.org/10.1097/MOU.0000000000000459

    Article  PubMed  Google Scholar 

  14. Lee JY, Cho KS, Kang DH, Do Jung H, Kwon JK, Oh CK, Ham WS, Choi YD (2015) A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer 15:566. https://doi.org/10.1186/s12885-015-1571-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hirner L, Stagge E, Rübben H, Schenck M, Eisenhardt A (2016) Narrow band imaging-assisted cystoscopy in bladder tumor follow-up: can more tumors be identified? Urol A 55:370–375. https://doi.org/10.1007/s00120-015-3942-9

    Article  CAS  Google Scholar 

  16. Chen SP, Liao JC (2014) Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 15:437. https://doi.org/10.1007/s11934-014-0437-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee CH, Tan CH, Faria SC, Kundra V (2017) Role of imaging in the local staging of urothelial carcinoma of the bladder. Am J Roentgenol 208:1193–1205. https://doi.org/10.2214/AJR.16.17114

    Article  Google Scholar 

  18. Gupta VG, Kumar S, Singh SK, Lal A, Kakkar N (2016) Contrast enhanced ultrasound in urothelial carcinoma of urinary bladder: an underutilized staging and grading modality. Cent Eur J Urol 69:360–365. https://doi.org/10.5173/ceju.2016.893

    Article  CAS  Google Scholar 

  19. McKibben MJ, Woods ME (2015) Preoperative imaging for staging bladder cancer. Curr Urol Rep 16:22. https://doi.org/10.1007/s11934-015-0496-8

    Article  PubMed  Google Scholar 

  20. Niwa N, Matsumoto K, Hayakawa N, Ito Y, Maeda T, Akatsuka S, Masuda T, Nakamura S, Tanaka N (2015) Comparison of outcomes between ultrasonography and cystoscopy in the surveillance of patients with initially diagnosed TaG1-2 bladder cancers: a matched-pair analysis. Urol Oncol 33:386.e15–386.e21. https://doi.org/10.1016/j.urolonc.2015.04.018

    Article  Google Scholar 

  21. Srivastava A, Douglass LM, Chernyak V, Watts KL (2017) Advances in imaging in prostate and bladder cancer. Curr Urol Rep 18:69. https://doi.org/10.1007/s11934-017-0718-3

    Article  PubMed  Google Scholar 

  22. Tadin T, Sotosek S, Rahelić D, Fuckar Z (2014) Diagnostic accuracy of ultrasound T-staging of the urinary bladder cancer in comparison with histology in elderly patients. Coll Antropol 38:1123–1126

    PubMed  Google Scholar 

  23. Li Q, Tang J, He E, Li Y, Zhou Y, Wang B (2017) Differentiation between high- and low-grade urothelial carcinomas using contrast enhanced ultrasound. Oncotarget 8:70883–70889. https://doi.org/10.18632/oncotarget.20151

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo S, Xu P, Zhou A, Wang G, Chen W, Mei J, Xiao F, Liu J, Zhang C (2017) Contrast-enhanced ultrasound differentiation between low- and high-grade bladder urothelial carcinoma and correlation with tumor microvessel density. J Ultrasound Med 36:2287–2297. https://doi.org/10.1002/jum.14262

    Article  PubMed  Google Scholar 

  25. Schmid SC, Zahel T, Haller B, Horn T, Metzger I, Holzapfel K, Seitz AK, Gschwend JE, Retz M, Maurer T (2016) Prognostic value of computed tomography before radical cystectomy in patients with invasive bladder cancer: imaging predicts survival. World J Urol 34:569–576. https://doi.org/10.1007/s00345-015-1654-9

    Article  PubMed  Google Scholar 

  26. Raman SP, Fishman EK (2014) Bladder malignancies on CT: the underrated role of CT in diagnosis. Am J Roentgenol 203:347–354. https://doi.org/10.2214/AJR.13.12021

    Article  Google Scholar 

  27. Trinh TW, Glazer DI, Sadow CA, Sahni VA, Geller NL, Silverman SG (2017) Bladder cancer diagnosis with CT urography: test characteristics and reasons for false-positive and false-negative results. Abdom Radiol 43:663–671. https://doi.org/10.1007/s00261-017-1249-6

    Article  Google Scholar 

  28. Helenius M, Dahlman P, Magnusson M, Lönnemark M, Magnusson A (2014) Contrast enhancement in bladder tumors examined with CT urography using traditional scan phases. Acta Radiol 55:1129–1136. https://doi.org/10.1177/0284185113513762

    Article  PubMed  Google Scholar 

  29. Helenius M, Dahlman P, Lonnemark M, Brekkan E, Wernroth L, Magnusson A (2016) Comparison of post contrast CT urography phases in bladder cancer detection. Eur Radiol 26:585–591. https://doi.org/10.1007/s00330-015-3844-7

    Article  PubMed  Google Scholar 

  30. Helenius M, Brekkan E, Dahlman P, Lönnemark M, Magnusson A (2015) Bladder cancer detection in patients with gross haematuria: computed tomography urography with enhancement-triggered scan versus flexible cystoscopy. Scand J Urol 49:377–381. https://doi.org/10.3109/21681805.2015.1026937

    Article  PubMed  Google Scholar 

  31. Capalbo E, Kluzer A, Peli M, Cosentino M, Berti E, Cariati M (2015) Bladder cancer diagnosis: the role of CT urography. Tumori 101:412–417. https://doi.org/10.5301/tj.5000331

    Article  PubMed  CAS  Google Scholar 

  32. Horn T, Zahel T, Adt N, Schmid SC, Heck MM, Thalgott MK, Hatzichristodoulou G, Haller B, Autenrieth M, Kübler HR, Gschwend JE, Holzapfel K, Maurer T (2016) Evaluation of computed tomography for lymph node staging in bladder cancer prior to radical cystectomy. Urol Int 96:51–56. https://doi.org/10.1159/000440889

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen HT, Pohar KS, Jia G, Shah ZK, Mortazavi A, Zynger DL, Wei L, Clark D, Yang X, Knopp MV (2014) Improving bladder cancer imaging using 3-T functional dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 49:390–395. https://doi.org/10.1097/RLI.0000000000000022

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malayeri AA, Pattanayak P, Apolo AB (2015) Imaging muscle-invasive and metastatic urothelial carcinoma. Curr Opin Urol 25:441–448. https://doi.org/10.1097/MOU.0000000000000208

    Article  PubMed  Google Scholar 

  35. Soubra A, Hayward D, Dahm P, Goldfarb R, Froehlich J, Jha G, Konety BR (2016) The diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography and computed tomography in staging bladder cancer: a single-institution study and a systematic review with meta-analysis. World J Urol 34:1229–1237. https://doi.org/10.1007/s00345-016-1772-z

    Article  PubMed  Google Scholar 

  36. Chen A, Liu A, Liu J, Tian S, Wang H, Liu Y (2016) Application of dual-energy spectral CT imaging in differential diagnosis of bladder cancer and benign prostate hyperplasia. Medicine (Baltimore) 95:e5705. https://doi.org/10.1097/MD.0000000000005705

    Article  Google Scholar 

  37. Hoosein MM, Rajesh A (2014) MR imaging of the urinary bladder. Magn Reson Imaging Clin N Am 22:129–134. https://doi.org/10.1016/j.mric.2014.01.001

    Article  PubMed  Google Scholar 

  38. Gandrup KL, Løgager VB, Bretlau T, Nordling J, Thomsen HS (2015) Diagnosis of bladder tumours in patients with macroscopic haematuria: a prospective comparison of split-bolus computed tomography urography, magnetic resonance urography and flexible cystoscopy. Scand J Urol 49:224–229. https://doi.org/10.3109/21681805.2014.981203

    Article  PubMed  Google Scholar 

  39. Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: a systematic review and meta-analysis. Eur J Radiol 95:46–55. https://doi.org/10.1016/j.ejrad.2017.07.021

    Article  PubMed  Google Scholar 

  40. Yoshida S, Koga F, Masuda H, Fujii Y, Kihara K (2014) Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol 21:1190–1200. https://doi.org/10.1111/iju.12587

    Article  PubMed  Google Scholar 

  41. Wollin DA, Deng FM, Huang WC, Babb JS, Rosenkrantz AB (2014) Conventional and diffusion-weighted MRI features in diagnosis of metastatic lymphadenopathy in bladder cancer. Can J Urol 21:7454–7459

    PubMed  Google Scholar 

  42. Kobayashi S, Koga F, Kajino K, Yoshita S, Ishii C, Tanaka H, Saito K, Masuda H, Fujii Y, Yamada T, Kihara K (2014) Apparent diffusion coefficient value reflects invasive and proliferative potential of bladder cancer. J Magn Reson Imaging 39:172–178. https://doi.org/10.1002/jmri.24148

    Article  PubMed  Google Scholar 

  43. Sevcenco S, Haitel A, Ponhold L, Susani M, Fajkovic H, Shariat SF, Hiess M, Spick C, Szarvas T, Baltzer PA (2014) Quantitative apparent diffusion coefficient measurements obtained by 3-tesla MRI are correlated with biomarkers of bladder cancer proliferative activity. PLoS One 9:e106866. https://doi.org/10.1371/journal.pone.0106866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhou G, Chen X, Zhang J, Zhu J, Zong G, Wang Z (2014) Contrast-enhanced dynamic and diffusion-weighted MR imaging at 3.0 T to assess aggressiveness of bladder cancer. Eur J Radiol 83:2013–2018. https://doi.org/10.1016/j.ejrad.2014.08.012

    Article  PubMed  Google Scholar 

  45. Kikuchi K, Shigihara T, Hashimoto Y, Miyajima M, Haga N, Kojima Y, Shishido F (2017) Apparent diffusion coefficient on magnetic resonance imaging (MRI) in bladder cancer: relations with recurrence/progression risk. Fukushima J Med Sci 63:90–99. https://doi.org/10.5387/fms.2017-05

    Article  PubMed  PubMed Central  Google Scholar 

  46. Suo ST, Chen XX, Fan Y, Wu LM, Yao QY, Cao MQ, Liu Q, Xu JR (2014) Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings. Acad Radiol 21:1027–1034. https://doi.org/10.1016/j.acra.2014.03.004

    Article  PubMed  Google Scholar 

  47. Yoshida S, Koga F, Kobayashi S, Tanaka H, Satoh S, Fujii Y, Kihara K (2014) Diffusion-weighted magnetic resonance imaging in management of bladder cancer, particularly with multimodal bladder-sparing strategy. World J Radiol 6:344–354. https://doi.org/10.4329/wjr.v6.i6.344

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang HJ, Pui MH, Guo Y, Li SR, Liu MJ, Guan J, Zhang XL, Feng Y (2014) Value of normalized apparent diffusion coefficient for estimating histological grade of vesical urothelial carcinoma. Clin Radiol 69:727–731. https://doi.org/10.1016/j.crad.2014.03.001

    Article  PubMed  CAS  Google Scholar 

  49. Yamada Y, Kobayashi S, Isoshima S, Arima K, Sakuma H, Sugimura Y (2014) The usefulness of diffusion-weighted magnetic resonance imaging in bladder cancer staging and functional analysis. J Cancer Res Ther 10:878–882. https://doi.org/10.4103/0973-1482.138225

    Article  PubMed  Google Scholar 

  50. Ohgiya Y, Suyama J, Sai S, Kawahara M, Takeyama N, Ohike N, Sasamori H, Munechika J, Saiki M, Onoda Y, Hirose M, Gokan T (2014) Preoperative T staging of urinary bladder cancer: efficacy of stalk detection and diagnostic performance of diffusion-weighted imaging at 3 T. Magn Reson Med Sci 13:175–181. https://doi.org/10.2463/mrms.2013-0104

    Article  PubMed  Google Scholar 

  51. Zhai N, Wang YH, Zhu LM, Wang JH, Sun XH, Hu XB, Li X, Yu T, Wang XL, Meng N, Yan QC, Li XJ, Luo YH (2015) Sensitivity and specificity of diffusion-weighted magnetic resonance imaging in diagnosis of bladder cancers. Clin Invest Med 38:E173–E184

    Article  PubMed  Google Scholar 

  52. Nakamura Y, Yoshida S, Tanaka H, Inoue M, Ito M, Kijima T, Yokoyama M, Ishioka J, Matsuoka Y, Saito K, Fujii Y, Kihara K (2017) Potential utility of diffusion-weighted magnetic resonance imaging in diagnosis of residual bladder cancer before second transurethral resection. Urol Int 98:298–303. https://doi.org/10.1159/000456722

    Article  PubMed  Google Scholar 

  53. Wang HJ, Pui MH, Guo Y, Yang D, Pan BT, Zhou XH (2014) Diffusion-weighted MRI in bladder carcinoma: the differentiation between tumor recurrence and benign changes after resection. Abdom Imaging 39:135–141. https://doi.org/10.1007/s00261-013-0038-0

    Article  PubMed  Google Scholar 

  54. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted mr imaging. Radiology 273:125–135. https://doi.org/10.1148/radiol.14132921

    Article  PubMed  Google Scholar 

  55. Sevcenco S, Ponhold L, Heinz-Peer G, Fajkovic H, Haitel A, Susani M, Shariat SF, Szarvas T, Baltzer PA (2014) Prospective evaluation of diffusion-weighted MRI of the bladder as a biomarker for prediction of bladder cancer aggressiveness. Urol Oncol 32:1166–1171. https://doi.org/10.1016/j.urolonc.2014.04.019

    Article  PubMed  Google Scholar 

  56. Lin WC, Chen JH (2015) Pitfalls and limitations of diffusion-weighted magnetic resonance imaging in the diagnosis of urinary bladder cancer. Transl Oncol 8:217–230. https://doi.org/10.1016/j.tranon.2015.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nguyen HT, Jia G, Shah ZK, Pohar K, Mortazavi A, Zynger DL, Wei L, Yang X, Clark D, Knopp MV (2015) Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging 41:1374–1382. https://doi.org/10.1002/jmri.24663

    Article  PubMed  Google Scholar 

  58. Chakiba C, Cornelis F, Descat E, Gross-Goupil M, Sargos P, Roubaud G, Houédé N (2015) Dynamic contrast enhanced MRI-derived parameters are potential biomarkers of therapeutic response in bladder carcinoma. Eur J Radiol 84:1023–1028. https://doi.org/10.1016/j.ejrad.2015.02.026

    Article  PubMed  Google Scholar 

  59. de Haas RJ, Steyvers MJ, Fütterer JJ (2014) Multiparametric MRI of the bladder: ready for clinical routine? Am J Roentgenol 202:1187–1195. https://doi.org/10.2214/AJR.13.12294

    Article  Google Scholar 

  60. van der Pol CB, Der Van, Shinagare AB, Tirumani SH, Preston MA, Vangel MG, Silverman SG (2018) Bladder cancer local staging: multiparametric MRI performance following transurethral resection. Abdom Radiol. https://doi.org/10.1007/s00261-017-1449-0

    Article  Google Scholar 

  61. Lakhani A, Khan SR, Bharwani N, Stewart V, Rockall AG, Khan S, Barwick TD (2017) FDG PET/CT pitfalls in gynecologic and genitourinary oncologic imaging. Radiographics 37:577–594. https://doi.org/10.1148/rg.2017160059

    Article  PubMed  Google Scholar 

  62. Chakraborty D, Mittal BR, Kashyap R, Mete UK, Narang V, Das A, Bhattacharya A, Khandelwal N, Mandal AK (2014) Role of fluorodeoxyglucose positron emission tomography/computed tomography in diagnostic evaluation of carcinoma urinary bladder: comparison with computed tomography. World J Nucl Med 13:34–39. https://doi.org/10.4103/1450-1147.138572

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aljabery F, Lindblom G, Skoog S, Shabo I, Olsson H, Rosell J, Jahnson S (2015) PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer. BMC Urol 15:87. https://doi.org/10.1186/s12894-015-0080-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kollberg P, Almquist H, Bläckberg M, Cwikiel M, Gudjonsson S, Lyttkens K, Patschan O, Liedberg F (2017) [18 F]Fluorodeoxyglucose-positron emission tomography/computed tomography response evaluation can predict histological response at surgery after induction chemotherapy for oligometastatic bladder cancer. Scand J Urol 51:308–313. https://doi.org/10.1080/21681805.2017.1321579

    Article  PubMed  Google Scholar 

  65. Kollberg P, Almquist H, Bläckberg M, Cronberg C, Garpered S, Gudjonsson S, Kleist J, Lyttkens K, Patschan O, Liedberg F (2015) [(18F)]Fluorodeoxyglucose-positron emission tomography/computed tomography improves staging in patients with high-risk muscle-invasive bladder cancer scheduled for radical cystectomy. Scand J Urol 49:296–301. https://doi.org/10.3109/21681805.2014.990053

    Article  PubMed  Google Scholar 

  66. Mertens LS, Mir MC, Scott AM, Lee ST, Fioole-Bruining A, Vegt E, Vogel WV, Manecksha R, Bolton D, Davis ID, Horenblas S, van Rhijn BW, Lawrentschuk N (2014) 18F-fluorodeoxyglucose–positron emission tomography/computed tomography aids staging and predicts mortality in patients with muscle-invasive bladder cancer. Urology 83:393–398. https://doi.org/10.1016/j.urology.2013.10.032

    Article  PubMed  Google Scholar 

  67. Sharma A, Mete UK, Sood A, Kakkar N, Gorla AK, Mittal BR (2017) Utility of early dynamic and delayed post-diuretic 18F-FDG PET/CT SUV max in predicting tumour grade and T-stage of urinary bladder carcinoma: results from a prospective single centre study. BJR 90:20160787. https://doi.org/10.1259/bjr.20160787

    Article  PubMed  Google Scholar 

  68. Jeong IG, Hong S, You D, Hong JH, Ahn H, Kim CS (2015) FDG PET-CT for lymph node staging of bladder cancer: a prospective study of patients with extended pelvic lymphadenectomy. Ann Surg Oncol 22:3150–3156. https://doi.org/10.1245/s10434-015-4369-7

    Article  PubMed  Google Scholar 

  69. Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G, Hughes S, Evison F, Dasgupta P, O’Brien T, Khan MS (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114:389–395. https://doi.org/10.1111/bju.12608

    Article  PubMed  CAS  Google Scholar 

  70. Graziani T, Ceci F, Lopes FL, Chichero J, Castellucci P, Schiavina R, Bianchi L, Chondrogiannis S, Colletti PM, Costa S, Rubello D, Fanti S (2015) 11C-choline PET/CT for restaging of bladder cancer. Clin Nucl Med 40:e1–e5. https://doi.org/10.1097/RLU.0000000000000573

    Article  PubMed  Google Scholar 

  71. Maurer T, Horn T, Souvatzoglou M, Eiber M, Beer AJ, Heck MM, Haller B, Gschwend JE, Schwaiger M, Treiber U, Krause BJ (2014) Prognostic value of 11C-choline PET/CT and CT for predicting survival of bladder cancer patients treated with radical cystectomy. Urol Int 93:207–213. https://doi.org/10.1159/000357686

    Article  PubMed  CAS  Google Scholar 

  72. Brunocilla E, Ceci F, Schiavina R, Castellucci P, Maffione AM, Cevenini M, Bianchi L, Borghesi M, Giunchi F, Fiorentino M, Chondrogiannis S, Colletti PM, Rubello D, Fanti S, Martorana G (2014) Diagnostic accuracy of (11)C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med 39:e308–e312. https://doi.org/10.1097/RLU.0000000000000342

    Article  PubMed  Google Scholar 

  73. Ceci F, Bianchi L, Graziani T, Castellucci P, Pultrone C, Eugenio B, Martorana G, Colletti PM, Rubello D, Fanti S, Schiavina R (2015) 11C-choline PET/CT and bladder cancer: lymph node metastasis assessment with pathological specimens as reference standard. Clin Nucl Med 40:e124–e128. https://doi.org/10.1097/RLU.0000000000000604

    Article  PubMed  Google Scholar 

  74. Rosenkrantz AB, Friedman KP, Ponzo F, Raad RA, Jackson K, Huang WC, Balar AV (2017) Prospective pilot study to evaluate the incremental value of PET information in patients with bladder cancer undergoing 18F-FDG simultaneous PET/MRI. Clin Nucl Med 42:e8–e15

    Article  PubMed  PubMed Central  Google Scholar 

  75. Partovi S, Robbin MR, Steinbach OC, Kohan A, Rubbert C, Vercher-Conejero JL, Kolthammer JA, Faulhaber P, Paspulati RM, Ros PR (2014) Initial experience of MR/PET in a clinical cancer center. J Magn Reson Imaging 39:768–780. https://doi.org/10.1002/jmri.24334

    Article  PubMed  Google Scholar 

  76. Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding YS, Jhaveri K, Beltran L, Jain R (2016) Current status of hybrid PET/MRI in oncologic imaging. Am J Roentgenol 206:162–172. https://doi.org/10.2214/AJR.15.14968

    Article  Google Scholar 

  77. Rosenkrantz AB, Balar AV, Huang WC, Jackson K, Friedman KP (2015) Comparison of coregistration accuracy of pelvic structures between sequential and simultaneous imaging during Hybrid Pet/MRI in patients with bladder cancer. Clin Nucl Med 40:637–641. https://doi.org/10.1097/RLU.0000000000000772

    Article  PubMed  PubMed Central  Google Scholar 

  78. Civelek AC, Apolo A, Agarwal P, Evers R, Bluemke D, Malayeri A (2016) 18F-FDG PET-MRI in the management of muscle invasive bladder cancer: challenges in imaging and solutions. J Nucl Med 57:1292

    Article  CAS  Google Scholar 

  79. Jadvar H, Desai B, Conti PS (2015) Sodium 18F-fluoride PET/CT of bone, joint and other disorders. Semin Nucl Med 45:58–65. https://doi.org/10.1053/j.semnuclmed.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mick CG, James T, Hill JD, Williams P, Perry M (2014) Molecular imaging in oncology: 18 F-sodium fluoride pet imaging of osseous metastatic disease. Am J Roentgenol 203:263–271. https://doi.org/10.2214/AJR.13.12158

    Article  Google Scholar 

  81. McInnes MD, Siemens DR, Mackillop WJ, Peng Y, Wei S, Schieda N, Booth CM (2016) Utilisation of preoperative imaging for muscle-invasive bladder cancer: a population-based study. BJU Int 117:430–438. https://doi.org/10.1111/bju.13034

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Thakur (PI), thanks NIH/NCI RO1CA157372, Deans Translational Science Award and the Sidney Kimmel Cancer Center Research award for their support in part. Dr. Ebru Salmanoglu is the visiting scholar to the Thakur laboratories and thanks The Scientific and Technological Research Council of Turkey (TÜBİTAK) for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew L. Thakur.

Ethics declarations

Conflict of interest

The authors Ebru Salmanoglu, Ethan Halpern, Edouard J. Trabulsi, Sung Kim, and Mathew L. Thakur have no of conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmanoglu, E., Halpern, E., Trabulsi, E.J. et al. A glance at imaging bladder cancer. Clin Transl Imaging 6, 257–269 (2018). https://doi.org/10.1007/s40336-018-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-018-0284-9

Keywords

Navigation