Skip to main content

Advertisement

Log in

Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

This review provides an account of the current status of the development of PET radiotracers for imaging aggregated alpha synuclein (α-syn) in Lewy bodies and Lewy neurites. This includes a description of the various strategies used in the development of an α-syn PET probe and the technological hurdles which have limited progress in this area of research.

Methods

A survey of the literature describing small molecule-based probes that bind to α-syn and have served as lead compounds for PET radiotracer development was conducted. This literature review includes a description of various radiolabeled probes having a modest affinity for α-syn which have been published within the past 5 years.

Results

Although different chemical entities have been described as having a moderate affinity for α-syn, their in vitro binding affinities for α-syn and selectivities for α-syn versus beta amyloid (Aβ) and tau fibrils are not ideal for serving as lead compounds for PET radiotracer development. Structure–activity relationship (SAR) studies have generated radiolabeled probes capable of binding to α-syn, but selectivity versus Aβ and tau remains a problem.

Conclusions

The development of an optimal PET probe for imaging aggregated α-syn in Lewy bodies and Lewy neurites remains as a high priority in the field pf PET radiotracer development, since it would improve the diagnosis of PD and provide a biomarker for disease progression. An α-syn PET radiotracer would also be useful in the evaluation of the efficacy of therapeutic strategies aimed at reducing levels of α-syn in the CNS. Although much progress has been made in recent years, the development of a PET radiotracer for imaging α-syn aggregates represents an unmet need in field of translational PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skovronsky DM, Lee VM, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol 1:151–170. doi:10.1146/annurev.pathol.1.110304.100113

    Article  CAS  PubMed  Google Scholar 

  2. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang GF, Debnath ML, Klunk WE (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 12(3):295–298

    Article  CAS  PubMed  Google Scholar 

  3. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46(13):2740–2754. doi:10.1021/jm030026b

    Article  CAS  PubMed  Google Scholar 

  4. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC, Dominantly Inherited Alzheimer N (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804. doi:10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kung HF, Choi SR, Qu W, Zhang W, Skovronsky D (2010) 18F Stilbenes and styrylpyridines for PET imaging of Aβ plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53(3):933–941. doi:10.1021/jm901039z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM, Group A-AS (2011) Use of florbetapir-PET for imaging β-amyloid pathology. JAMA J Am Med Assoc 305(3):275–283. doi:10.1001/jama.2010.2008

    Article  CAS  Google Scholar 

  7. Becker GA, Ichise M, Barthel H, Luthardt J, Patt M, Seese A, Schultze-Mosgau M, Rohde B, Gertz HJ, Reininger C, Sabri O (2013) PET quantification of 18F-florbetaben binding to beta-amyloid deposits in human brains. J Nucl Med Off Publ Soc Nucl Med 54(5):723–731. doi:10.2967/jnumed.112.107185

    CAS  Google Scholar 

  8. Rowe CC, Pejoska S, Mulligan RS, Jones G, Chan JG, Svensson S, Cselenyi Z, Masters CL, Villemagne VL (2013) Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J Nucl Med Off Publ Soc Nucl Med 54(6):880–886. doi:10.2967/jnumed.112.114785

    CAS  Google Scholar 

  9. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H (2014) [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imagin 41(2):290–300. doi:10.1007/s00259-013-2564-y

    Article  CAS  Google Scholar 

  10. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VM, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094–1108. doi:10.1016/j.neuron.2013.07.037

    Article  CAS  PubMed  Google Scholar 

  11. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 9(6):666–676. doi:10.1016/j.jalz.2012.11.008

    Article  Google Scholar 

  12. Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, Shankle WR, Lerner AJ, Su MY, Elizarov A, Kolb HC (2014) Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimer’s Dis JAD 38(1):171–184. doi:10.3233/jad-130098

    PubMed  Google Scholar 

  13. Mach RH (2014) New targets for the development of PET tracers for imaging neurodegeneration in Alzheimer Disease. J Nucl Med Off Publ Soc Nucl Med 55(8):1221–1224. doi:10.2967/jnumed.114.127811

    CAS  Google Scholar 

  14. Brooks DJ, Tambasco N (2016) Imaging synucleinopathies. Mov Disord Off J Mov Disord Soc 31(6):814–829. doi:10.1002/mds.26547

    Article  Google Scholar 

  15. Chen JJ (2010) Parkinson’s disease: health-related quality of life, economic cost, and implications of early treatment. Am J Manag Care 16:S87–S93

    PubMed  Google Scholar 

  16. Kaltenboeck A, Johnson SJ, Davis MR, Birnbaum HG, Carroll CA, Tarrants ML, Siderowf AD (2012) Direct costs and survival of medicare beneficiaries with early and advanced parkinson’s disease. Parkinsonism Relat Disord 18(4):321–326

    Article  CAS  PubMed  Google Scholar 

  17. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72(21 Suppl 4):S1–136

    Article  PubMed  Google Scholar 

  19. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23(6):837–844

    Article  PubMed  Google Scholar 

  20. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42(6):1142–1146

    Article  CAS  PubMed  Google Scholar 

  21. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatr 55(3):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jankovic J, Rajput AH, McDermott MP, Perl DP (2000) The evolution of diagnosis in early Parkinson disease. Parkinson Study Group. Arch Neurol 57(3):369–372

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, Healy DG, Wood NW, Lees AJ, Holton JL, Revesz T (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127(12):2657–2671

    Article  PubMed  Google Scholar 

  24. Fujishiro H, Ahn TB, Frigerio R, DelleDonne A, Josephs KA, Parisi JE, Eric AJ, Dickson DW (2008) Glial cytoplasmic inclusions in neurologically normal elderly: prodromal multiple system atrophy? Acta Neuropathol 116(3):269–275

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wakabayashi K, Mori F, Nishie M, Oyama Y, Kurihara A, Yoshimoto M, Kuroda N (2005) An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol 110(2):185–190

    Article  PubMed  Google Scholar 

  26. Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58(1):120–129

    Article  CAS  PubMed  Google Scholar 

  27. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90(23):11282–11286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vilar M, Chou HT, Luhrs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 105(25):8637–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320

    Article  CAS  PubMed  Google Scholar 

  31. Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46 K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280(9):7800–7807

    Article  CAS  PubMed  Google Scholar 

  32. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    Article  CAS  PubMed  Google Scholar 

  33. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  34. Braak H, Del TK, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  35. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  36. Valera E, Monzio Compagnoni G, Masliah E (2016) Review: novel treatment strategies targeting alpha-synuclein in multiple system atrophy as a model of synucleinopathy. Neuropathol Appl Neurobiol 42(1):95–106. doi:10.1111/nan.12312

    Article  CAS  PubMed  Google Scholar 

  37. Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13(1):179–189. doi:10.1007/s13311-015-0397-z

    Article  CAS  PubMed  Google Scholar 

  38. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS (2012) Pathologic accumulation of alpha-synuclein and Abeta in Parkinson disease patients with dementia. Arch Neurol 69(10):1326–1331. doi:10.1001/archneurol.2012.1608

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pike VW (2016) Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr Med Chem 23(18):1818–1869

    Article  CAS  PubMed  Google Scholar 

  40. Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, Kotzbauer PT (2013) Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One 8(2):e55031. doi:10.1371/journal.pone.0055031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai L, Qu B, Hurtle BT, Dadiboyena S, Diaz-Arrastia R, Pike VW (2016) Candidate PET radioligand development for neurofibrillary tangles: two distinct radioligand binding sites identified in postmortem Alzheimer’s disease brain. ACS Chem Neurosci 7(7):897–911. doi:10.1021/acschemneuro.6b00051

    Article  CAS  PubMed  Google Scholar 

  42. Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, Itoh M, Iwata R, Yanai K, Arai H (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med Off Publ Soc Nucl Med 48(4):553–561

    CAS  Google Scholar 

  43. Fodero-Tavoletti MT, Mulligan RS, Okamura N, Furumoto S, Rowe CC, Kudo Y, Masters CL, Cappai R, Yanai K, Villemagne VL (2009) In vitro characterisation of BF227 binding to alpha-synuclein/Lewy bodies. Eur J Pharmacol 617(1–3):54–58. doi:10.1016/j.ejphar.2009.06.042

    Article  CAS  PubMed  Google Scholar 

  44. Kikuchi A, Takeda A, Okamura N, Tashiro M, Hasegawa T, Furumoto S, Kobayashi M, Sugeno N, Baba T, Miki Y, Mori F, Wakabayashi K, Funaki Y, Iwata R, Takahashi S, Fukuda H, Arai H, Kudo Y, Yanai K, Itoyama Y (2010) In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 133(Pt 6):1772–1778. doi:10.1093/brain/awq091

    Article  PubMed  Google Scholar 

  45. Celej MS, Jares-Erijman EA, Jovin TM (2008) Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein. Biophys J 94(12):4867–4879. doi:10.1529/biophysj.107.125211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Volkova KD, Kovalska VB, Balanda AO, Losytskyy MY, Golub AG, Vermeij RJ, Subramaniam V, Tolmachev OI, Yarmoluk SM (2008) Specific fluorescent detection of fibrillar alpha-synuclein using mono- and trimethine cyanine dyes. Bioorg Med Chem 16(3):1452–1459. doi:10.1016/j.bmc.2007.10.051

    Article  CAS  PubMed  Google Scholar 

  47. Neal KL, Shakerdge NB, Hou SS, Klunk WE, Mathis CA, Nesterov EE, Swager TM, McLean PJ, Bacskai BJ (2013) Development and screening of contrast agents for in vivo imaging of Parkinson’s disease. Molecular Imagin Biol Mib Off Publ Acad Mol Imagin 15(5):585–595. doi:10.1007/s11307-013-0634-y

    Article  Google Scholar 

  48. Honson NS, Johnson RL, Huang W, Inglese J, Austin CP, Kuret J (2007) Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiol Dis 28(3):251–260. doi:10.1016/j.nbd.2007.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F, Bertsch U, Mitteregger-Kretzschmar G, Geissen M, Eiden M, Leidel F, Hirschberger T, Deeg AA, Krauth JJ, Zinth W, Tavan P, Pilger J, Zweckstetter M, Frank T, Bahr M, Weishaupt JH, Uhr M, Urlaub H, Teichmann U, Samwer M, Botzel K, Groschup M, Kretzschmar H, Griesinger C, Giese A (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125(6):795–813. doi:10.1007/s00401-013-1114-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deeg AA, Reiner AM, Schmidt F, Schueder F, Ryazanov S, Ruf VC, Giller K, Becker S, Leonov A, Griesinger C, Giese A (1850) Zinth W (2015) Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to alpha-synuclein aggregates. Biochim Biophys Acta 9:1884–1890. doi:10.1016/j.bbagen.2015.05.021

    Google Scholar 

  51. Yu L, Cui J, Padakanti PK, Engel L, Bagchi DP, Kotzbauer PT, Tu Z (2012) Synthesis and in vitro evaluation of α-synuclein ligands. Bioorg Med Chem 20(15):4625–4634. doi:10.1016/j.bmc.2012.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Jin H, Padakanti PK, Li J, Yang H, Fan J, Mach RH, Kotzbauer P, Tu Z (2014) Radiosynthesis and evaluation of two PET radioligands for imaging alpha-synuclein. Appl Sci (Basel) 4(1):66–78. doi:10.3390/app4010066

    Article  Google Scholar 

  53. Chu W, Zhou D, Gaba V, Liu J, Li S, Peng X, Xu J, Dhavale D, Bagchi DP, d’Avignon A, Shakerdge NB, Bacskai BJ, Tu Z, Kotzbauer PT, Mach RH (2015) Design, synthesis, and characterization of 3-(Benzylidene)indolin-2-one Derivatives as Ligands for alpha-synuclein fibrils. J Med Chem 58(15):6002–6017. doi:10.1021/acs.jmedchem.5b00571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ono M, Hori M, Haratake M, Tomiyama T, Mori H, Nakayama M (2007) Structure-activity relationship of chalcones and related derivatives as ligands for detecting of beta-amyloid plaques in the brain. Bioorg Med Chem 15(19):6388–6396. doi:10.1016/j.bmc.2007.06.055

    Article  CAS  PubMed  Google Scholar 

  55. Ono M, Watanabe R, Kawashima H, Cheng Y, Kimura H, Watanabe H, Haratake M, Saji H, Nakayama M (2009) Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of beta-amyloid plaques in Alzheimer’s disease. J Med Chem 52(20):6394–6401. doi:10.1021/jm901057p

    Article  CAS  PubMed  Google Scholar 

  56. Ono M, Cheng Y, Kimura H, Watanabe H, Matsumura K, Yoshimura M, Iikuni S, Okamoto Y, Ihara M, Takahashi R, Saji H (2013) Development of novel 123I-labeled pyridyl benzofuran derivatives for SPECT imaging of beta-amyloid plaques in Alzheimer’s disease. PLoS One 8(9):e74104. doi:10.1371/journal.pone.0074104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med Off Publ Soc Nucl Med 55(9):1397–1400. doi:10.2967/jnumed.113.136515

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Michael J. Fox Foundation for its continued support of the Alpha Synuclein Imaging Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Mach.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose. This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzbauer, P.T., Tu, Z. & Mach, R.H. Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites. Clin Transl Imaging 5, 3–14 (2017). https://doi.org/10.1007/s40336-016-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0217-4

Keywords

Navigation