Skip to main content
Log in

Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Chenopodiaceae is one of the most important families in arid and saline environments. Several studies have observed the mycorrhizal structure in Chenopodiaceae plants (i.e., chenopods), but the mycorrhizal colonization status of chenopods in saline habitats and the influencing factors are still not well understood. The mycorrhizal colonization of twenty chenopod species in three different saline habitats (a saline alkaline meadow in the Songnen Plain of northeastern China, a saline desert in the Junggar Basin of northwestern China, and a saline alpine meadow in the Tibetan Plateau of western China) and the chenopod-associated environmental factors (including soil moisture, soil available phosphorous (P) concentration, pH, and salt content) were analyzed. Our results showed that approximately 60% of the studied chenopods were colonized by arbuscular mycorrhizal (AM) fungi with a colonization percentage ranging from 5% to 33%. Structural analysis of mycorrhizal association indicated that vesicles were quite common, while arbuscules and hyphal coils were relatively rare. In addition, a positive correlation between mycorrhizal colonization rate and soil electrical conductivity (r=0.920, P<0.01) and two negative correlations of mycorrhizal colonization rates with soil moisture (r=–0.818, P<0.01) and the soil available P concentration (r=–0.876, P<0.01) confirmed that mycorrhizal colonization rate in the roots of chenopods was environment-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera L E, Gutierrez J R, Moreno R J. 1998. Vesiculo arbuscular mycorrhizae associated with saltbushes Atriplex spp.(Chenopodiaceae) in the Chilean arid zone. Revista Chilena de Historia Natural, 71: 291–302.

    Google Scholar 

  • Aleman R, Tiver F. 2010. Endomycorrhizal infection levels among chenopod plant species at port wakefield, south Australia. Transactions of the Royal Society of South Australia, 134(1): 1–4.

    Google Scholar 

  • Aliasgharzadeh N, Rastin S N, Towfighi H, et al. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11(3): 119–122.

    Article  Google Scholar 

  • Allen E B, Allen M F. 1986. Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytologist, 104(4): 559–571.

    Article  Google Scholar 

  • Allen M F. 1983. Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia, 75(5): 773–776.

    Article  Google Scholar 

  • Allen M F, Allen E B. 1990. Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semiarid shrub-steppe. Ecology, 71(5): 2019–2021.

    Article  Google Scholar 

  • Asghari H R, Marschner P, Smith S E, et al. 2005. Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 273(1–2): 245–256.

    Article  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, et al. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62(3): 1049–1060.

    Article  Google Scholar 

  • Barrow J R, Havstad K M, McCaslin B D. 1997. Fungal root endophytes in fourwing saltbush, Atriplex canescens, on arid rangelands of southwestern USA. Arid Soil Research and Rehabilitation, 11(2): 177–185.

    Article  Google Scholar 

  • Bouwmeester H J, Roux C, Lopez-Raez J A, et al. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 12(5): 224–230.

    Article  Google Scholar 

  • Bruce A, Smith S E, Tester M. 1994. The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytologist, 127(3): 507–514.

    Article  Google Scholar 

  • Camenzind T, Hempel S, Homeier J, et al. 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 20(12): 3646–3659.

    Article  Google Scholar 

  • Chandrasekaran M, Boughattas S, Hu S J, et al. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 24(8): 611–625.

    Article  Google Scholar 

  • Coughlan A P, Dalpé Y, Lapointe L, et al. 2000. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research, 30(10): 1543–1554.

    Article  Google Scholar 

  • Daleo P, Fanjul E, Casariego A M, et al. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters, 10(10): 902–908.

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104(7): 1263–1280.

    Article  Google Scholar 

  • Glenn E P, O’Leary J W, Watson M C, et al. 1991. Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251(4997): 1065–1067.

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D. 2004. Diversity of arbuscular mycorrhizal fungi colonizing roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza, 14(2): 111–117.

    Article  Google Scholar 

  • Hepper C M. 1984. Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Transactions of the British Mycological Society, 83(1): 154–156.

    Article  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, et al. 2001. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza, 10(4): 175–183.

    Article  Google Scholar 

  • Hirrel M C, Mehravaran H, Gerdemann J W. 1978. Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur?. Canadian Journal of Botany, 56(22): 2813–2817.

    Article  Google Scholar 

  • Hodge A, Fitter A H. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 107(31): 13754–13759.

    Article  Google Scholar 

  • Ingleby K, Fahmer A, Wilson J, et al. 2001. Interactions between mycorrhizal colonisation, nodulation and growth of Calliandra calothyrsus seedlings supplied with different concentrations of phosphorus solution. Symbiosis, 30(1): 15–28.

    Google Scholar 

  • Jakobsen I, Abbott L K, Robson A D. 1992. External hyphae of vesicular—arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.2.Hyphal transport of 32P over defined distances. New Phytologist, 120(4): 509–516.

    Article  Google Scholar 

  • Kiers E T, Duhamel M, Beesetty Y, et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044): 880–882.

    Article  Google Scholar 

  • Kittiworawat S, Youpensuk S, Rerkasem B. 2010. Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis. Chiang Mai Journal of Science, 37(3): 517–527.

    Google Scholar 

  • Miransari M. 2011. Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 193(2): 77–81.

    Article  Google Scholar 

  • Mohan J E, Cowden C C, Baas P, et al. 2014. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 10: 3–19.

    Article  Google Scholar 

  • Nazeri N K, Lambers H, Tibbett M, et al. 2014. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell and Environment, 37(4): 911–921.

    Article  Google Scholar 

  • Nogueira M A, Cardoso E J N. 2007. Phosphorus availability changes the internal and external endomycorrhizal colonization and affects symbiotic effectivenes. Scientia Agricola, 64(3): 295–300.

    Article  Google Scholar 

  • Oehl F, Redecker D, Sieverding E. 2005. Glomus badium, a new sporocarpic mycorrhizal fungal species from European grasslands with higher soil pH. Journal of Applied Botany and Food Quality, 79(1): 38–43.

    Google Scholar 

  • Olsson P A, Tyler G. 2004. Occurrence of non-mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. Journal of Ecology, 92(5): 808–815.

    Article  Google Scholar 

  • Pennisi E. 2004. The secret life of fungi. Science, 304(5677): 1620–1622.

    Article  Google Scholar 

  • Plenchette C, Duponnois R. 2005. Growth response of the saltbush Atriplex nummularia L.to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. Journal of Arid Environments, 61(4): 535–540.

    Article  Google Scholar 

  • Porcel R, Ruiz-Lozano J M. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55(403): 1743–1750.

    Article  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M. 2007. Mycorrhiza influences plant community structure in succession on spoil banks. Basic and Applied Ecology, 8(6): 510–520.

    Article  Google Scholar 

  • Raznikiewicz H, Carlgren K, Maartensson A. 1994. Impact of phosphorus fertilization and liming on the presence of arbuscular mycorrhizal spores in a Swedish long-term field experiment. Swedish Journal of Agricultural Research, 24: 157–164.

    Google Scholar 

  • Reddy M V, Verma N K. 1981. Aphid-mycorrhizal association, and its relationship with the rhizosphere-soil pH. Comparative Physiology and Ecology, 6(3): 157–158.

    Google Scholar 

  • Rodriguez A, Sanders I R. 2015. The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME Journal, 9(5): 1053–1061.

    Article  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y, et al. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 168(10): 1031–1037.

    Article  Google Scholar 

  • Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press, 202–203.

    Google Scholar 

  • Selosse M A, Rousset F. 2011. The plant-fungal marketplace. Science, 333(6044): 828–829.

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S. 1990. Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in west Bengal (India). Plant and Soil, 122(1): 111–113.

    Article  Google Scholar 

  • Shi Z Y, Feng G, Christie P, et al. 2006. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza, 16(4): 269–275.

    Article  Google Scholar 

  • Shi Z Y, Mickan B, Feng G, et al. 2015. Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. Journal of Arid Land, 7(3): 414–420.

    Article  Google Scholar 

  • Sigüenza C, Espejel I, Allen E B. 1996. Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza, 6(2): 151–157.

    Article  Google Scholar 

  • Smith F A, Grace E J, Smith S E. 2009. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist, 182(2): 347–358.

    Article  Google Scholar 

  • Smith S E, Read D J. 2008. Mycorrhizal Symbiosis (3rd ed.). Amsterdam, Boston: Academic Press, 26–27.

    Google Scholar 

  • Smith S E, Jakobsen I, Grønlund M, et al. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3): 1050–1057.

    Article  Google Scholar 

  • Trouvelot A, Kough J L, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S. Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae. Paris: INRA Press, 217–221.

    Google Scholar 

  • van der Heijden M G A, Streitwolf-Engel R, Riedl R, et al. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 172(4): 739–752.

    Article  Google Scholar 

  • Van Tuinen D, Jacquot E, Zhao B, et al. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology, 7(7): 879–887.

    Article  Google Scholar 

  • Varga S, Kytöviita M M. 2010. Interrelationships between mycorrhizal symbiosis, soil pH and plant sex modify the performance of Antennaria dioica. Acta Oecologica, 36(3): 291–298.

    Article  Google Scholar 

  • Wagg C, Bender S F, Widmer F, et al. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14): 5266–5270.

    Article  Google Scholar 

  • Whiteside M D, Digman M A, Gratton E, et al. 2012. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry, 55: 7–13.

    Article  Google Scholar 

  • Wilde P, Manal A, Stodden M, et al. 2009. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 11(6): 1548–1561.

    Article  Google Scholar 

  • Williams S E, Wollum A G, Aldon E F. 1974. Growth of Atriplex canescens (Pursh) Nutt. improved by formation of vesicular-arbuscular mycorrhizae. Soil Science Society of America Journal, 38(6): 962–965.

    Article  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, et al. 2007. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225(4): 1031–1038.

    Article  Google Scholar 

  • Zhang T, Shi N, Bai D S, et al. 2012. Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae) with no enhancement of phosphorus nutrition. PLoS ONE, 7(9): e41151.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31300097, 31470405), and the Foundation of Jilin Provincial Education Department and the China Scholarship Council (201506625023). We thank Dr. CAI Xiaobu and Dr. ZHANG Ke for their help with field work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhang or Jixun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yu, H., Zhang, T. et al. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. J. Arid Land 9, 143–152 (2017). https://doi.org/10.1007/s40333-016-0027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-016-0027-6

Keywords

Navigation