Skip to main content

Advertisement

Log in

Bohr Type Inequalities for the Class of Self-Analytic Maps on the Unit Disk

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

This article is devoted to sharp improvements of the classical Bohr inequality for the class \( \mathcal {B} \) of analytic self-maps defined on the unit disk \( \mathbb {D} \). In addition, we prove a sharp result which is an improved version of the classical Bohr inequality replacing the initial coefficients \( |a_0|, |a_1| \) and \( |a_2| \) in the majorant series by \( |f(z)|, |f^{\prime }(z)| \) and \( |f^{\prime \prime }(z)|/2! \) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahamed, M.B., Allu, V.: Bohr phenomenon for certain classes of harmonic mappings. Rocky Mt. J. Math. (2021) (to appear)

  2. Ahamed, M.B., Allu, V., Halder, H.: Bohr radius for certain classes of close-to-convex harmonic mappings. Anal. Math. Phys. 11, 111 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Ahamed, M.B., Allu, V., Halder, H.: Improved Bohr inequalities for certain class of harmonic univalent functions. Complex Var. Ellipt. Equ. (2021). https://doi.org/10.1080/17476933.2021.1988583

    Article  MATH  Google Scholar 

  4. Ahamed, M.B., Allu, V., Halder, H.: The Bohr phenomenon for analytic functions on shifted disks. Ann. Acad. Sci. Fenn. Math. 47, 103–120 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Am. Math. Soc. 128, 1147–1155 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Aizenberg, L.: Remarks on the Bohr and Rogosinski phenomenon for power series. Anal. Math. Phys. 2, 69–78 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Aizenberg, L., Elin, M., Shoikhet, D.: On the Rogosinski radius for holomorphic mappings and some of its applications. Stud. Math. 168(2), 147–158 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Aizenberg, L., Gotliv, V., Vidras, A.: Bohr and Rogosinski abscissas for ordinary Dirichlet series. Comput. Method Funct. Theory 9(1), 65–74 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Aizenberg, L., Tarkhanov, N.: A Bohr phenomenon for elliptic equations. Proc. Lond. Math. Soc. 82(2), 385–401 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with a fixed zero coefficient. Proc. Am. Math. Soc. 147, 5263–5274 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Allu, V., Halder, H.: Bohr radius for certain classes of starlike and convex univalent functions. J. Math. Anal. Appl. 493, 124519 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Allu, V., Halder, H.: Bohr phenomenon for certain subclasses of harmonic mappings. Bull. Sci. Math. 173, 103053 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Allu, V., Halder, H.: Bohr phenomenon for certain close-to-convex analytic functions. Comput. Method Funct. Theory (2021). https://doi.org/10.1007/s40315-021-00412-6

    Article  MATH  Google Scholar 

  14. Allu, V., Halder, H.: Operator valued analogue of multidimensional Bohr inequality. Can. Math. Bull. (2022) (to appear)

  15. Bayart, F., Pellegrino, D., Sepulveda, J.B.: The Bohr radius of the \( n \)-dimensional polydisk is equivalent to \(\sqrt{(\log n)/n}\). Adv. Math. 264, 726–746 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Bénéteau, C., Dahlner, A., Khavinson, D.: Remarks on the Bohr phenomenon. Comput. Methods Funct. Theory 4, 1–19 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Bhowmik, B., Das, N.: Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 462, 1087–1098 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Bhowmik, B., Das, N.: Bohr phenomenon for locally univalent functions and logarithmic power series. Comput. Methods Funct. Theory 19, 729–745 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Blasco, O.: The Bohr radius of a Banach space. In: Curbera, G.P., Mockenhaupt, G., Ricker, W.J. (eds.) Vector Measures, Integration and Related Topics, vol. 201, Operator Theory and Advanced Applications. Birkhäuser, Basel, pp. 59–64 (2010)

  20. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125(10), 2975–2979 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Boas, H.P.: Majorant Series. J. Korean Math. Soc. 37, 321–337 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. s2–13, 1–5 (1914)

  23. Dai, S.Y., Pan, Y.F.: Note on Schwarz–Pick estimates for bounded and positive real part analytic functions. Proc. Am. Math. Soc. 136, 635–640 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Das, N.: Refinements of the Bohr and Rogosisnki phenomena. J. Math. Anal. Appl. 508(1), 125847 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Defant, A., Frerick, L.: The Bohr radius of the unit ball of \(l^n_p\). J. Reine Angew. Math. 660, 131–147 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Dixon, P.G.: Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 27(4), 359–362 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Djakov, P.B., Ramanujan, M.S.: A remark on Bohr’s theorems and its generalizations. J. Anal. 8, 65–77 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for shifted disks. Results Math. 76, 14 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 255. Marcel Dekker Inc, New York (2003)

    Google Scholar 

  30. Guadarrama, Z.: Bohr’s radius for polynomials in one complex variable. Comput. Methods Funct. Theory 5, 143–151 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Huang, Y., Liu, M.-S., Ponnusamy, S.: Bohr-type inequalities for harmonic mappings with a multiple zero at the origin. Mediterr. J. Math. 18, 75 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Ismagilov, A., Kayumov, I.R., Ponnusamy, S.: Sharp Bohr type inequality. J. Math. Anal. Appl. 489, 124147 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Ismagilov, A., Kayumov, A.V., Kayumov, I.R., Ponnusamy, S.: Bohr inequalities in some classes of analytic functions, J. Math. Sci. 252(3)

  34. Kayumov, I.R., Ponnusamy, S.: Improved version of Bohr’s inequality. C. R. Acad. Sci. Paris Ser. I 356, 272–277 (2018)

  35. Kayumov, I.R., Ponnusamy, S.: Bohr–Rogosinski radius for analytic functions (preprint). arXiv:1708.05585

  36. Kayumov, I.R., Ponnusamy, S.: Bohr inequality for odd analytic functions. Comput. Methods Funct. Theory 17, 679–688 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Kayumov, I.R., Ponnusamy, S.: Bohr’s inequalities for the analytic functions with Lacunary series and harmonic functions. J. Math. Anal. Appl. 465, 857–871 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Ser. A 44, 301–310 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Kumar, S., Sahoo, S.: Bohr inequalities for certain integral operators. Mediterr. J. Math. 18, 268 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Lata, S., Singh, D.: Bohr’s inequality for non-commutative Hardy spaces. Proc. Am. Math. Soc. 150(1), 201–211 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Liu, G.: Bohr-type inequality via proper combination. J. Math. Anal. Appl. 503(1), 125308 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Liu, G., Liu, Z., Ponnusamy, S.: Refined Bohr inequality for bounded analytic functions. Bull. Sci. Math. 173, 103054 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Liu, M.-S., Ponnusamy, S.: Multidimensional analogues of refined Bohr’s inequality. Proc. Am. Math. Soc. 149(5), 2133–2146 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Liu, M.-S., Shang, Y.-M., Xu, J.-F.: Bohr-type inequalities of analytic functions. J. Inequal. Appl. 2018, 345 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Paulsen, V.I., Popescu, G., Singh, D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 85(2), 493–512 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 132, 3577–3579 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Paulsen, V.I., Singh, D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38(6), 991–999 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Paulsen, V.I., Popescu, G., Singh, D.: On Bohr inequality. Proc. Lond. Math. Soc. 85(2), 493–512 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: New inequalities for the coefficients of unimodular bounded functions. Results Math. 75, 107 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Ponnusamy, S., Wirths, K.-J.: Bohr type inequalities for functions with a multiple zero at the origin. Comput. Methods Funct. Theory 20, 559–570 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: Modifications of Bohr’s inequality in various settings. Houst. J. Math. (2021) (to appear). arXiv:2104.05920

  52. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: Improved Bohr’s phenomenon in quasi-subordination classes. J. Math. Anal. Appl. 506(1), 125645 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Rogosinski, W.: Über Bildschranken bei Potenzreihen und ihren Abschnitten. Math. Z. 17, 260–276 (1923)

    MathSciNet  MATH  Google Scholar 

  54. Ruscheweyh, S.: Two remarks on bounded analytic functions. Serdica 11, 200–202 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Sidon, S.: Über einen Satz von Herrn Bohr. Math. Z. 26, 731–732 (1927)

    MathSciNet  MATH  Google Scholar 

  56. Tomic, M.: Sur un Theoreme de H. Bohr. Math. Scand. 11, 103–106 (1962)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the anonymous referees for their elaborate comments and valuable suggestions which improved significantly the presentation of the paper. The second author is supported by UGC-JRF (NTA Ref. No.: 201610135853), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molla Basir Ahamed.

Additional information

Communicated by Raymond Mortini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamed, M.B., Ahammed, S. Bohr Type Inequalities for the Class of Self-Analytic Maps on the Unit Disk. Comput. Methods Funct. Theory 23, 789–806 (2023). https://doi.org/10.1007/s40315-023-00482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-023-00482-8

Keywords

Mathematics Subject Classification

Navigation