Skip to main content
Log in

Efficient generation of random derangements with the expected distribution of cycle lengths

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We show how to generate random derangements efficiently by two different techniques: random restricted transpositions and sequential importance sampling. The algorithm employing restricted transpositions can also be used to generate random fixed-point-free involutions only, a. k. a. random perfect matchings on the complete graph. Our data indicate that the algorithms generate random samples with the expected distribution of cycle lengths, which we derive, and for relatively small samples, which can actually be very large in absolute numbers, we argue that they generate samples indistinguishable from the uniform distribution. Both algorithms are simple to understand and implement and possess a performance comparable to or better than those of currently known methods. Simulations suggest that the mixing time of the algorithm based on random restricted transpositions (in the total variance distance with respect to the distribution of cycle lengths) is \(O(n^{a}\log {n}^{2})\) with \(a \simeq \frac{1}{2}\) and n the length of the derangement. We prove that the sequential importance sampling algorithm generates random derangements in O(n) time with probability O(1/n) of failing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akl SG (1989) A new algorithm for generating derangements. BIT Numer Math 20(1):2–7

    MATH  Google Scholar 

  • Aldous D, Diaconis P (1986) Shuffling cards and stopping times. Am Math Mon 93(5):333–348

    MathSciNet  MATH  Google Scholar 

  • Arratia R, Barbour AD, Tavaré S (2003) Logarithmic combinatorial structures: a probabilistic approach. EMS, Zürich

    MATH  Google Scholar 

  • Bacher A, Bodini O, Hwang H-K, Tsai T-H (2017) Generating random permutations by coin tossing: classical algorithms, new analysis, and modern implementation. ACM Trans Algorithms 13(2):24

    MathSciNet  MATH  Google Scholar 

  • Baril JL, Vajnovszki V (2004) Gray code for derangements. Discret Appl Math 140(1–3):207–221

    MathSciNet  MATH  Google Scholar 

  • Beichl I, Sullivan F (1999) Approximating the permanent via importance sampling with application to the dimer covering problem. J Comput Phys 149(1):128–147

    MathSciNet  MATH  Google Scholar 

  • Blumberg O (2012) Cutoff for the transposition walk on permutations with one-sided restrictions. arXiv:1202.4797 [math.PR]

  • Brualdi RA, Ryser RJ (1991) Combinatorial matrix theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Charalambides CA (2002) Enumerative combinatorics. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Chen Y, Diaconis P, Holmes SP, Liu JS (2005) Sequential Monte Carlo methods for statistical analysis of tables. J Am Stat Assoc 100(469):109–120

    MathSciNet  MATH  Google Scholar 

  • Chung F, Diaconis P, Graham R (2019) Permanental generating functions and sequential importance sampling. Adv Appl Math. https://doi.org/10.1016/j.aam.2019.05.004(in press)

  • Diaconis P (1988) Group representations in probability and statistics. IMS, Hayward

    MATH  Google Scholar 

  • Diaconis PW, Holmes SP (1998) Matchings and phylogenetic trees. Proc Natl Acad Sci USA 95(25):14600–14602

    MathSciNet  MATH  Google Scholar 

  • Diaconis P, Holmes S (2002) Random walks on trees and matchings. Electron J Probab 7:6

    MathSciNet  MATH  Google Scholar 

  • Diaconis P, Kolesnik B (2019) Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs. arXiv:1907.02333 [math.PR]

  • Diaconis P, Shahshahani M (1981) Generating a random permutation by random transpositions. Z Wahrsch Verw Gebiete 57(2):159–179

    MathSciNet  MATH  Google Scholar 

  • Diaconis P, Graham RL, Holmes SP (2001) Statistical problems involving permutations with restricted positions. In: de Gunst M, Klaassen C, Van der Vaart A (eds) State of the art in probability and statistics: Festschrift for Willem R. van Zwet. IMS, Beachwood, pp 195–222

    Google Scholar 

  • Dyer M, Müller H (2019) Counting perfect matchings and the switch chain. SIAM J Discret Math 33(3):1146–1174

    MathSciNet  MATH  Google Scholar 

  • Dyer M, Jerrum M, Müller H (2017) On the switch Markov chain for perfect matchings. J ACM 64(2):12

    MathSciNet  MATH  Google Scholar 

  • Flajolet P, Soria M (1990) Gaussian limiting distributions for the number of components in combinatorial structures. J Comb Theor Ser A 53(2):165–182

    MathSciNet  MATH  Google Scholar 

  • Gries D, Xue J (1988) Generating a random cyclic permutation. BIT Numer Math 28(3):569–572

    MathSciNet  MATH  Google Scholar 

  • Hanlon P (1996) A random walk on the rook placements on a Ferrer’s board. Electron J Comb 3(2):26

    MathSciNet  MATH  Google Scholar 

  • Korsh JF, LaFollette PS (2004) Constant time generation of derangements. Inf Process Lett 90(4):181–186

    MathSciNet  MATH  Google Scholar 

  • Kuznetsov NY (1996) Computing the permanent by importance sampling method. Cybern Syst Anal 32(6):749–755

    MATH  Google Scholar 

  • Lovász L, Plummer MD (2009) Matching theory. Corrected reprint. AMS, Providence

    MATH  Google Scholar 

  • Martínez C, Panholzer A, Prodinger H (2008) Generating random derangements. In: Sedgewick R, Szpankowski W (eds) Proceedings of the fifth workshop on analytic algorithmics and combinatorics—ANALCO. SIAM, Philadelphia, pp 234–240

  • Ozel E (2017) The number of \(k\)-cycles in a family of restricted permutations. arXiv:1710.07885 [math.PR]

  • Panholzer A, Prodinger H, Riedel M (2004) Measuring post–quickselect disorder. J Iran Stat Soc 3(2):219–249

    MATH  Google Scholar 

  • Prodinger H (2002) On the analysis of an algorithm to generate a random cyclic permutation. Ars Comb 65:75–78

    MathSciNet  MATH  Google Scholar 

  • Rasmussen LE (1994) Approximating the permanent: a simple approach. Random Struct Algorithms 5(2):349–361

    MathSciNet  MATH  Google Scholar 

  • Sattolo S (1986) An algorithm to generate a random cyclic permutation. Inf Process Lett 22(6):315–317

    MathSciNet  Google Scholar 

  • Sedgewick R (1977) Permutation generation methods. Comput Surv 9(2):137–164

    MathSciNet  MATH  Google Scholar 

  • Smith A (2015) Comparison theory for Markov chains on different state spaces and application to random walk on derangements. J Theor Probab 28(4):1406–1430

    MathSciNet  MATH  Google Scholar 

  • Vigna S (2019) xoshiro/xoroshiro generators and the PRNG shootout. http://xoshiro.di.unimi.it/. Accessed 15 Dec 2019

  • Wilson MC (2009) Random and exhaustive generation of permutations and cycles. Ann Comb 12(4):509–520

    MathSciNet  MATH  Google Scholar 

  • Wolfram Research, Inc. (2018) Mathematica, Version 11.3. Champaign

Download references

Acknowledgements

The author thanks Aaron Smith (U. Ottawa) for useful correspondence and suggestions improving a previous version of the manuscript, the Laboratoire de Physique Théorique et Modèles Statistiques – LPTMS (CNRS UMR 8486) for kind hospitality during a sabbatical leave in France where part of this work was done, and FAPESP (Brazil) for partial support through Grants nos. 2017/22166-9 and 2020/04475-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ricardo G. Mendonça.

Additional information

Communicated by Eduardo Souza de Cursi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, J.R.G. Efficient generation of random derangements with the expected distribution of cycle lengths. Comp. Appl. Math. 39, 244 (2020). https://doi.org/10.1007/s40314-020-01295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01295-4

Keywords

Mathematics Subject Classification

Navigation