Skip to main content

Advertisement

Log in

Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider a recent coinfection model for Tuberculosis (TB), Human Immunodeficiency Virus (HIV) infection, and Acquired Immunodeficiency Syndrome (AIDS) proposed in Silva and Torres (Discr Contin Dyn Syst 35(9):4639–4663, 2015). We introduce and analyze a multiobjective formulation of an optimal control problem, where the two conflicting objectives are minimization of the number of HIV-infected individuals with AIDS clinical symptoms and coinfected with AIDS and active TB; and costs related to prevention and treatment of HIV and/or TB measures. The proposed approach eliminates some limitations of previous works. The results of the numerical study provide comprehensive insights about the optimal treatment policies and the population dynamics resulting from their implementation. Some nonintuitive conclusions are drawn. Overall, the simulation results demonstrate the usefulness and validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agusto FB, Adekunle AI (2014) Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. Biosystems 119:20–44

    Article  Google Scholar 

  • Bowman VJ Jr (1976) On the relationship of the Chebyshev norm and the efficient frontier of multiple criteria objectives. Lect Note Econ Math Syst 130:76–86

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  MathSciNet  MATH  Google Scholar 

  • Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382(9903):1525–1533

  • Denysiuk R, Rodrigues HS, Monteiro MTT, Costa L, Espírito Santo I, Torres DFM (2015) Multiobjective approach to optimal control for a dengue transmission model. Stat Optim Inf Comput 3(3):206–220

    Article  MathSciNet  MATH  Google Scholar 

  • Denysiuk R, Silva CJ, Torres DFM (2015) Multiobjective approach to optimal control for a tuberculosis model. Optim Method Softw 30(5):893–910

    Article  MathSciNet  MATH  Google Scholar 

  • Denysiuk R, Rodrigues HS, Monteiro MTT, Costa L, Espírito Santo I, Torres DFM (2016) Dengue disease: a multiobjective viewpoint. J Math Anal 7(1):70–90

    MathSciNet  MATH  Google Scholar 

  • Gass S, Saaty T (1955) The computational algorithm for the parametric objective function. Nav Res Log Q 2(1):39–45

    Article  MathSciNet  Google Scholar 

  • Getahun H, Gunneberg C, Granich R, Nunn P (2010) HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis 50:S201–S207

    Article  Google Scholar 

  • Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1(3):296–297

    MathSciNet  MATH  Google Scholar 

  • Jung E, Lenhart S, Feng Z (2002) Optimal control of treatments in a two-strain tuberculosis model. Discr Contin Dyn Syst Ser B 2(4):473–482

    Article  MathSciNet  MATH  Google Scholar 

  • Kirschner D, Lenhart S, Serbin S (1996) Optimal control of the chemotherapy of HIV. J Math Biol 35:775–792

    Article  MathSciNet  MATH  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Magombedze G, Mukandavire Z, Chiyaka C, Musuka G (2009) Optimal control of a sex structured HIV/AIDS model with condom use. Math Model Anal 14:483–494

    Article  MathSciNet  MATH  Google Scholar 

  • Messac A, Mattson C (2004) Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J 42:2101–2111

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization, vol 12., International series in operations research and management science, Kluwer Academic Publishers, Berlin

  • Morison L (2001) The global epidemiology of HIV/AIDS. Br Med Bull 58:7–18

    Article  Google Scholar 

  • Okosun KO, Makinde OD (2014) A co-infection model of malaria and cholera diseases with optimal control. Math Biosci 258:19–32

    Article  MathSciNet  MATH  Google Scholar 

  • Pascoletti A, Serafini P (1984) Scalarizing vector optimization problems. J Optim Theory Appl 42(4):499–524

    Article  MathSciNet  MATH  Google Scholar 

  • Pontryagin L, Boltyanskii V, Gramkrelidze R, Mischenko E (1962) The mathematical theory of optimal processes, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Rodrigues P, Silva CJ, Torres DFM (2014) Cost-effectiveness analysis of optimal control measures for tuberculosis. Bull Math Biol 76(10):2627–2645

    Article  MathSciNet  MATH  Google Scholar 

  • Roeger LW, Feng Z, Castillo-Chavez C (2009) Modeling TB and HIV co-infections. Math Biosci Eng 6:815–837

    Article  MathSciNet  MATH  Google Scholar 

  • Rom WN, Markowitz SB (2007) Environmental and occupational medicine. Lippincott Williams & Wilkins, Pennsylvania

    Google Scholar 

  • Silva SJ, Torres DFM (2013) Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math Biosci 244(2):154–164

    Article  MathSciNet  MATH  Google Scholar 

  • Silva CJ, Torres DFM (2015) A TB-HIV/AIDS coinfection model and optimal control treatment. Discr Contin Dyn Syst Ser A 35(9):4639–4663

    Article  MathSciNet  MATH  Google Scholar 

  • UNAIDS (2013) Global report: UnAIDS report on the global AIDS epidemic 2013. Technol Rep Geneva

  • UNAIDS (2014a) Fact sheet. Technol Rep

  • UNAIDS (2014b) The gap report 2014 - People living with HIV. Technol Rep Geneva

  • WHO (2013) Global tuberculosis report 2013. WHO report, Geneva

  • WHO (2014) Global tuberculosis report 2014. WHO report, Geneva

  • Weiss RA (1993) How does HIV cause AIDS? Science 260(5112):1273–1279

  • Zeleny M (1976) The theory of the displaced ideal. In: Zeleny M (ed) Multiple Criteria Decision Making. Springer, New York, pp 153–206

    Google Scholar 

Download references

Acknowledgements

Silva and Torres were supported by Portuguese funds through the Center for Research and Development in Mathematics and Applications (CIDMA) and the Portuguese Foundation for Science and Technology (FCT), within project UID/MAT/04106/2013; and by the FCT project TOCCATA, ref. PTDC/EEI-AUT/2933/2014. Silva is also grateful to the FCT post-doc fellowship SFRH/ BPD/72061/2010. The authors would like to thank two anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres.

Additional information

Communicated by Maria do Rosário de Pinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denysiuk, R., Silva, C.J. & Torres, D.F.M. Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem. Comp. Appl. Math. 37, 2112–2128 (2018). https://doi.org/10.1007/s40314-017-0438-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0438-9

Keywords

Mathematics Subject Classification

Navigation