Skip to main content

Advertisement

Log in

From Gini to Bonferroni to Tsallis: an inequality-indices trek

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Arguably, the Gini index is the best known and the most widely applied inequality index in socioeconomics in particular, and across the sciences in general. On the other hand, far less known and less applied is the Bonferroni index. Addressed via Lorenz curves, the Gini index can be formulated as the average of two continuums of inequality indices that, respectively, stem from two sets of Lorenz-based distances: vertical and horizontal. These Gini-index formulations use one natural type of Lorenz-based distances. However, there is another natural type of Lorenz-based distances, and when using this type: (1) averaging the vertical continuum of inequality indices yields the known Bonferroni index; (2) averaging the horizontal continuum of inequality indices yields a new Bonferroni index. This paper explores comprehensively the two Bonferroni indices, and presents the many analogies between these indices and the Gini index. This paper also unifies the Bonferroni indices and the Gini index via two families of inequality induces: (1) a “vertical family” of which the known Bonferroni index and the Gini index are special cases; (2) a “horizontal family” of which the new Bonferroni index and the Gini index are special cases. These two families are shown to be counterparts of the Tsallis family of entropy measures, and the two Bonferroni indices are shown to be counterparts of the Shannon entropy. Written in an entirely self-contained manner, this paper is accessible also to audiences with no prior knowledge of inequality indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here \(\mathcal {L}_{1}\) and \(\mathcal {L}_{2}\) are two Lorenz sets, \(I_{1}\) is the inequality-index value of \(\mathcal {L}_{1}\), and \(I_{2}\) is the inequality-index value of \(\mathcal {L}_{2}\).

  2. Formulated alternatively, the digamma function is the logarithmic derivative of the gamma function: \(\Psi \left( t\right) =\frac{d}{dt}\ln \left[ \Gamma \left( t\right) \right] \).

  3. The right-hand side of Eq. (43) manifests the asymptotic behavior of \( I_{n}\left( X\right) \) as \(n\rightarrow \infty \).

  4. For \(n\ne 1\) Eq. (49) follows straightforwardly from Eq. (47) due to the fact that the density function \(f_{\xi }\left( t\right) \) has a unit mass, \(\int _{0}^{\infty }f_{\xi }\left( t\right) ^{n}dt=1\).

References

  1. Arnold, B.C.: Pareto Distributions. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  2. Barcena-Martin, E., Silber, J.: On the generalization and decomposition of the Bonferroni index. Soc. Choice Welf. 41(4), 763–787 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bernasco, W., Steenbeek, W.: More places than crimes: Implications for evaluating the law of crime concentration at place. J. Quant. Criminol. 33(3), 451–467 (2017)

    Google Scholar 

  4. Betti, G., Lemmi, A. (eds.): Advances on income inequality and concentration measures. Routledge, Abingdon (2008)

    Google Scholar 

  5. Bonferroni, C.E.: Elementi di statistica generale. Libreria Seber (1930)

  6. Chotikapanich, D. (ed.): Modeling income distributions and Lorenz curves, vol. 5. Springer, New York (2008)

    MATH  Google Scholar 

  7. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Coulter, P.B.: Measuring inequality: A methodological handbook. Routledge, Abingdon (2018)

    Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (2012)

    MATH  Google Scholar 

  10. Cowell, F.: Measuring inequality. Oxford University Press, Oxford (2011)

    Google Scholar 

  11. Eliazar, I.: From moving averages to anomalous diffusion: a Renyi-entropy approach. J. Phys. A Math. Theor. 48(3), 03FT01 (2014)

    MATH  Google Scholar 

  12. Eliazar, I.: The sociogeometry of inequality: Part I. Phys. A 426, 93–115 (2015)

    MathSciNet  Google Scholar 

  13. Eliazar, I.: The sociogeometry of inequality: Part II. Phys. A 426, 116–137 (2015)

    MathSciNet  Google Scholar 

  14. Eliazar, I.: Harnessing inequality. Phys. Rep. 649, 1–29 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Eliazar, I.: Zipf law: an extreme perspective. J. Phys. A Math. Theor. 49(15), 15LT01 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Eliazar, I.: Inequality spectra. Phys. A 469, 824–847 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Eliazar, I.: A tour of inequality. Ann. Phys. 389, 306–332 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Eliazar, I.: Average is over. Phys. A 492, 123–137 (2018)

    MathSciNet  Google Scholar 

  19. Eliazar, I.: Power Laws: A statistical trek. Springer Complexity, New York (2020)

    MATH  Google Scholar 

  20. Eliazar, I.I., Cohen, M.H.: Power-law connections: From Zipf to Heaps and beyond. Ann. Phys. 332, 56–74 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Eliazar, I.I., Cohen, M.H.: Topography of chance. Phys. Rev. E 88(5), 052104 (2013)

    Google Scholar 

  22. Eliazar, I., Cohen, M.H.: Hierarchical socioeconomic fractality: The rich, the poor, and the middle-class. Phys. A 402, 30–40 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Eliazar, I.I., Sokolov, I.M.: Measuring statistical evenness: A panoramic overview. Phys. A 391(4), 1323–1353 (2012)

    Google Scholar 

  24. Gastwirth, J.L.: A general definition of the Lorenz curve. Econom. J. Econom. Soc., 1037–1039 (1971)

  25. Gell-Mann, M., Tsallis, C. (eds.): Nonextensive entropy: interdisciplinary applications. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  26. Gini, C.: Variabilita e mutabilita. In: Pizetti, E., Salvemini, T. (eds.) Memorie di metodologica statistica (Libreria Eredi Virgilio Veschi, Rome, 1955) (1912)

  27. Gini, C.: Sulla misura della concentrazione e della variabilita dei caratteri. Atti del Reale Istituto veneto di scienze lettere ed arti 73, 1203–1248 (1914)

    Google Scholar 

  28. Gini, C.: Measurement of inequality of incomes. Econ. J. 31(121), 124–126 (1921)

    Google Scholar 

  29. Giorgi, G.M.: Gini coefficient. In: Atkinson, P.A., Cernat, A., Delamont, S., Sakshaug, J.W., Williams, R. (eds.) SAGE Research Methods Foundations (2019). https://doi.org/10.4135/9781526421036

  30. Giorgi, G.M.: Gini’s scientific work: an evergreen. Metron 63(3), 299–315 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Giorgi, G.M., Crescenzi, M.: A proposal of poverty measures based on the Bonferroni inequality index. Metron 59(3–4), 3–16 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Giorgi, G.M., Gigliarano, C.: The Gini concentration index: a review of the inference literature. J. Econ. Surv. 31(4), 1130–1148 (2017)

    Google Scholar 

  33. Giorgi, G.M., Gubbiotti, S.: Celebrating the memory of Corrado Gini: a personality out of the ordinary. Int. Stat. Rev. 85(2), 325–339 (2017)

    MathSciNet  Google Scholar 

  34. Giorgi, G.M., Nadarajah, S.: Bonferroni and Gini indices for various parametric families of distributions. Metron 68(1), 23–46 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Glottometrics 5: The entire issue is on Zipf’s law (2002)

  36. Hao, L., Naiman, D.Q.: Assessing inequality, vol. 166. Sage Publications, Thousand Oaks (2010)

    Google Scholar 

  37. Hardy, M.: Pareto’s law. Math. Intell. 32(3), 38–43 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Hasisi, B., Perry, S., Ilan, Y., Wolfowicz, M.: Concentrated and close to home: the spatial clustering and distance decay of lone terrorist vehicular attacks. J. Quant. Criminol., 1–39 (2019)

  39. Imedio-Olmedo, L.J., Parrado-Gallardo, E.M., Barcena-Martin, E.: The \(\beta \) Family of Inequality Measures. Working paper 289, ECINEQ, Society for the Study of Economic Inequality (2013)

  40. Imedio-Olmedo, L.J., Barcena-Martin, E., Parrado-Gallardo, E.M.: A class of Bonferroni inequality indices. J. Public Econ. Theory 13(1), 97–124 (2011)

    Google Scholar 

  41. Imedio-Olmedo, L.J., Parrado-Gallardo, E.M., Barcena-Martin, E.: Income inequality indices interpreted as measures of relative deprivation/satisfaction. Soc. Indic. Res. 109(3), 471–491 (2012)

    Google Scholar 

  42. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    MathSciNet  MATH  Google Scholar 

  43. Lorenz, M.O.: Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9(70), 209–219 (1905)

    Google Scholar 

  44. Martinez-Mekler, G., Martinez, R.A., del Rio, M.B., Mansilla, R., Miramontes, P., Cocho, G.: Universality of rank-ordering distributions in the arts and sciences. PLoS One 4(3), e4791 (2009)

    Google Scholar 

  45. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Newman, M.E.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Google Scholar 

  47. Nygard, F., Sandstrum, A.: Measuring income inequality. Almqvist & Wiksell International, Stockholm (1981)

    Google Scholar 

  48. O’Hagan, S., Muelas, M.W., Day, P.J., Lundberg, E., Kell, D.B.: GeneGini: Assessment via the Gini coefficient of reference “housekeeping” genes and diverse human transporter expression profiles. Cell Syst. 6(2), 230–244 (2018)

    Google Scholar 

  49. Pareto, V.: Cours d’economie politique. Librairie Droz. Pareto, V. Manual of political economy: a critical and variorum edition. Oxford University Press, Oxford (2014) (1896)

  50. Reed, W.J.: Advances in distribution theory, order statistics, and inference. In: Balakrishnan, N., Castillo, E., Sarabia Alegria, J.M. (eds.), pp. 61–74 . Springer, New York (2007)

  51. Reed, W.J., Hughes, B.D.: From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature. Phys. Rev. E 66(6), 067103 (2002)

    Google Scholar 

  52. Reed, W.J., Jorgensen, M.: The double Pareto-lognormal distribution—a new parametric model for size distributions. Commun. Stat. Theory Methods 33(8), 1733–1753 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Renyi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1: Contributions to the Theory of Statistics. The Regents of the University of California (1961)

  54. Saichev, A.I., Malevergne, Y., Sornette, D.: Theory of Zipf’s law and beyond, vol. 632. Springer, New York (2009)

    MATH  Google Scholar 

  55. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  56. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois press, Urbana (1949)

    MATH  Google Scholar 

  57. Tarsitano, A.: Income and wealth distribution, inequality and poverty. In: Dagum, C., Zenga, M. (Eds.) Proceedings of the Second International Conference on Income Distribution by Size: Generation, Distribution, Measuremente and Applications, held at the University of Pavia, Italy, September 28-30, pp. 228–242. Springer, New York (1989)

  58. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988)

    MathSciNet  MATH  Google Scholar 

  59. Tsallis, C.: Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, New York (2009)

    MATH  Google Scholar 

  60. Tu, J., Sui, H., Feng, W., Sun, K., Xu, C., Han, Q.: Detecting building facade damage from oblique aerial images using local symmetry feature and the GINI index. Remote Sens. Lett. 8(7), 676–685 (2017)

    Google Scholar 

  61. Yitzhaki, S.: More than a dozen alternative ways of spelling Gini. Res. Econ. Inequal. 8, 13–30 (1998)

    Google Scholar 

  62. Yitzhaki, S., Lambert, P.J.: The relationship between the absolute deviation from a quantile and Gini’s mean difference. Metron 71(2), 97–104 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Yitzhaki, S., Schechtman, E.: The Gini methodology: A primer on a statistical methodology, vol. 272. Springer, New York (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iddo Eliazar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Preliminaries

  • A) Consider the general random variable \(\xi \), as described at the beginning of Sect. 2.1. In terms of its density function \(f_{\xi }\left( t\right) \), as well as in terms of its survival function \(\bar{F}_{\xi }\left( t\right) \) and distribution function \(F_{\xi }\left( t\right) \), the mean of the random variable is given by

    $$\begin{aligned} \mathbf {E}\left[ \xi \right]= & {} \int _{0}^{\infty }tf_{\xi }\left( t\right) dt \nonumber \\= & {} \int _{0}^{\infty }\bar{F}_{\xi }\left( t\right) dt=\int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) \right] dt. \end{aligned}$$
    (51)
  • B) Consider n IID copies \(\left\{ \xi _{1},\ldots ,\xi _{n}\right\} \) of the random variable \(\xi \). The distribution function of the maximum \(\xi _{1}\vee \cdots \vee \xi _{n}=\max \left\{ \xi _{1},\ldots ,\xi _{n}\right\} \) is given by

    $$\begin{aligned} F_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( t\right)= & {} \Pr \left( \xi _{1}\vee \cdots \vee \xi _{n}\le t\right) \nonumber \\= & {} \Pr \left( \xi _{1}\le t\right) \cdots \Pr \left( \xi _{n}\le t\right) =F_{\xi }\left( t\right) ^{n}. \end{aligned}$$
    (52)

    Differentiating Eq. (52) implies that the density function of the maximum \(\xi _{1}\vee \cdots \vee \xi _{n}\) is given by

    $$\begin{aligned} f_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( t\right) =nF_{\xi }\left( t\right) ^{n-1}f_{\xi }\left( t\right) . \end{aligned}$$
    (53)

    The survival function of the minimum \(\xi _{1}\wedge \cdots \wedge \xi _{n}=\min \left\{ \xi _{1},\ldots ,\xi _{n}\right\} \) is given by

    $$\begin{aligned} \bar{F}_{\xi _{1}\wedge \cdots \wedge \xi _{n}}\left( t\right)= & {} \Pr \left( \xi _{1}\wedge \cdots \wedge \xi _{n}>t\right) \nonumber \\= & {} \Pr \left( \xi _{1}>t\right) \cdots \Pr \left( \xi _{n}>t\right) =\bar{F} _{\xi }\left( t\right) ^{n}. \end{aligned}$$
    (54)

    Differentiating Eq. (54) implies that the density function of the minimum \(\xi _{1}\wedge \cdots \wedge \xi _{n}\) is given by

    $$\begin{aligned} f_{\xi _{1}\wedge \cdots \wedge \xi _{n}}\left( t\right) =n\bar{F}_{\xi }\left( t\right) ^{n-1}f_{\xi }\left( t\right) \text { .} \end{aligned}$$
    (55)
  • C) Set the focus now on the minimum \(\xi _{1}\wedge \xi _{2}\). Conditioning implies that

    $$\begin{aligned} \mathbf {E}\left[ \xi _{1}\wedge \xi _{2}\right]= & {} \int _{0}^{\infty }\mathbf {E} \left[ \xi _{1}\wedge \xi _{2}{{\vert } }\xi _{2}=t\right] f_{\xi }\left( t\right) dt \nonumber \\= & {} \int _{0}^{\infty }\mathbf {E}\left[ \min \left\{ \xi _{1},t\right\} \right] f_{\xi }\left( t\right) dt=\int _{0}^{\infty }\mathbf {E}\left[ \min \left\{ \xi ,t\right\} \right] f_{\xi }\left( t\right) dt. \end{aligned}$$
    (56)

    From Eq. (56) we obtain that

    $$\begin{aligned} \frac{\mathbf {E}\left[ \xi _{1}\wedge \xi _{2}\right] }{\mathbf {E}\left[ \xi \right] }=\int _{0}^{\infty }\frac{\mathbf {E}\left[ \min \left\{ \xi ,t\right\} \right] }{\mathbf {E}\left[ \xi \right] }f_{\xi }\left( t\right) dt . \end{aligned}$$
    (57)

    Equations (51) and (54) imply that

    $$\begin{aligned} \mathbf {E}\left[ \xi _{1}\wedge \xi _{2}\right] =\int _{0}^{\infty }\bar{F} _{\xi _{1}\wedge \xi _{2}}\left( t\right) dt=\int _{0}^{\infty }\bar{F}_{\xi }\left( t\right) ^{2}dt. \end{aligned}$$
    (58)

    In turn, Eqs. (51) and (58) imply that

    $$\begin{aligned} \mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi _{1}\wedge \xi _{2}\right]= & {} \int _{0}^{\infty }\bar{F}_{\xi }\left( t\right) dt-\int _{0}^{\infty }\bar{F} _{\xi }\left( t\right) ^{2}dt \nonumber \\= & {} \int _{0}^{\infty }\left[ \bar{F}_{\xi }\left( t\right) -\bar{F}_{\xi }\left( t\right) ^{2}\right] dt=\int _{0}^{\infty }\bar{F}_{\xi }\left( t\right) \left[ 1-\bar{F}_{\xi }\left( t\right) \right] dt \nonumber \\= & {} \int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) \right] F_{\xi }\left( t\right) dt. \end{aligned}$$
    (59)

    From Eq. (59) we obtain that

    $$\begin{aligned} 1-\frac{\mathbf {E}\left[ \xi _{1}\wedge \xi _{2}\right] }{\mathbf {E}\left[ \xi \right] }=\frac{1}{\mathbf {E}\left[ \xi \right] }\int _{0}^{\infty }F_{\xi }\left( t\right) \left[ 1-F_{\xi }\left( t\right) \right] dt. \end{aligned}$$
    (60)
  • D) Note that

    $$\begin{aligned}&\int _{0}^{\infty }sf_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds \nonumber \\&\quad =\int _{0}^{\infty }\left( \int _{0}^{s}dt\right) \left\{ f_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] \right\} ds \nonumber \\&\quad =\int _{0}^{\infty }\left\{ \int _{t}^{\infty }f_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds\right\} dt. \end{aligned}$$
    (61)

    Integration-by-parts implies that

    $$\begin{aligned} \int _{t}^{\infty }f_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds=-\left[ 1-F_{\xi }\left( t\right) \right] -F_{\xi }\left( t\right) \ln \left[ F_{\xi }\left( t\right) \right] . \end{aligned}$$
    (62)

    Integrating Eq. (62) over the non-negative half-line, and using Eq. (51), we have

    $$\begin{aligned}&\int _{0}^{\infty }\left\{ \int _{t}^{\infty }f_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds\right\} dt \nonumber \\&\int _{0}^{\infty }\left\{ -\left[ 1-F_{\xi }\left( t\right) \right] -F_{\xi }\left( t\right) \ln \left[ F_{\xi }\left( t\right) \right] \right\} dx \nonumber \\&\quad =-\int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) \right] dt-\int _{0}^{\infty }F_{\xi }\left( t\right) \ln \left[ F_{\xi }\left( t\right) \right] dt \nonumber \\&\quad =-\mathbf {E}\left[ \xi \right] -\int _{0}^{\infty }F_{\xi }\left( t\right) \ln \left[ F_{\xi }\left( t\right) \right] dt. \end{aligned}$$
    (63)

    Combined together, Eqs. (61) and (63) imply that

    $$\begin{aligned} \int _{0}^{\infty }sf_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds=-\mathbf {E}\left[ \xi \right] -\int _{0}^{\infty }F_{\xi }\left( t\right) \ln \left[ F_{\xi }\left( t\right) \right] dt. \end{aligned}$$
    (64)

    In turn, we can re-write Eq. (64) as follows:

    $$\begin{aligned} -\int _{0}^{\infty }sf_{\xi }\left( s\right) \ln \left[ F_{\xi }\left( s\right) \right] ds=\mathbf {E}\left[ \xi \right] -\int _{0}^{\infty }F_{\xi }\left( t\right) \ln \left[ 1/F_{\xi }\left( t\right) \right] dt. \end{aligned}$$
    (65)

1.2 Eqs. (12)–(15)

Equations (11) and (7) imply that

$$\begin{aligned} I_{Gini}= & {} \int _{0}^{1}\left[ \bar{L}\left( u\right) -L\left( u\right) \right] du \nonumber \\= & {} \int _{0}^{1}\left\{ \left[ 1-L\left( 1-u\right) \right] -L\left( u\right) \right\} du \nonumber \\= & {} 1-\int _{0}^{1}L\left( 1-u\right) du-\int _{0}^{1}L\left( u\right) du \nonumber \\= & {} 1-2\int _{0}^{1}L\left( u\right) du. \end{aligned}$$
(66)

Equation (66) yields Eq. (12).

Using the change-of-variables \(u=F_{X}\left( t\right) \) and Eq. (3) we have

$$\begin{aligned} 2\int _{0}^{1}L\left( u\right) du= & {} 2\int _{0}^{\infty }L\left[ F_{X}\left( t\right) \right] f_{X}\left( t\right) dt \nonumber \\= & {} 2\int _{0}^{\infty }F_{Y}\left( t\right) f_{X}\left( t\right) dt. \end{aligned}$$
(67)

In turn, using Eq. (53) (for the random variable \(\xi =X\) and \(n=2\)) we have

$$\begin{aligned} 2\int _{0}^{\infty }F_{Y}\left( t\right) f_{X}\left( t\right) dt= & {} \int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) } \left[ 2F_{X}\left( t\right) f_{X}\left( t\right) \right] dt \nonumber \\= & {} \int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) } f_{X_{1}\vee X_{2}}\left( t\right) dt. \end{aligned}$$
(68)

Equations (67)–(68) imply that

$$\begin{aligned} 2\int _{0}^{1}L\left( u\right) du=\int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) }f_{X_{1}\vee X_{2}}\left( t\right) dt. \end{aligned}$$
(69)

Substituting Eq. (69) into Eq. (66) yields Eq. (15).

Equation (1) implies that

$$\begin{aligned} 2\int _{0}^{\infty }F_{Y}\left( t\right) f_{X}\left( t\right) dt= & {} 2\int _{0}^{\infty }F_{Y}\left( t\right) \left[ \frac{\mu }{t}f_{Y}\left( t\right) \right] dt \nonumber \\= & {} \mu \int _{0}^{\infty }\frac{1}{t}\left[ 2F_{Y}\left( t\right) f_{Y}\left( t\right) \right] dt. \end{aligned}$$
(70)

In turn, using Eq. (53) (for the random variable \(\xi =Y\) and \(n=2\)), and then the reciprocation \(Z=1/Y\), we have:

$$\begin{aligned} \mu \int _{0}^{\infty }\frac{1}{t}\left[ 2F_{Y}\left( t\right) f_{Y}\left( t\right) \right] dt= & {} \mu \int _{0}^{\infty }\frac{1}{t}f_{Y_{1}\vee Y_{2}}\left( t\right) dt \nonumber \\= & {} \mu \mathbf {E}\left[ \frac{1}{Y_{1}\vee Y_{2}}\right] =\mu \mathbf {E}\left[ \min \left\{ \frac{1}{Y_{1}},\frac{1}{Y_{2}}\right\} \right] \nonumber \\= & {} \mu \mathbf {E}\left[ Z_{1}\wedge Z_{2}\right] , \end{aligned}$$
(71)

where \(Z_{1}\) and \(Z_{2}\) are IID copies of the random variable Z. Equation (67) and Eqs. (70)–(71), together with the fact that \( \mathbf {E}\left[ Z\right] =1/\mu \), imply that

$$\begin{aligned} 2\int _{0}^{1}L\left( u\right) du=\frac{\mathbf {E}\left[ Z_{1}\wedge Z_{2} \right] }{\mathbf {E}\left[ Z\right] }. \end{aligned}$$
(72)

In turn, Eqs. (66) and (72) imply that

$$\begin{aligned} I_{Gini}=1-\frac{\mathbf {E}\left[ Z_{1}\wedge Z_{2}\right] }{\mathbf {E}\left[ Z\right] }. \end{aligned}$$
(73)

Equations (73) and (57) (for \(\xi =Z\)) yield Eq. (14). Equations (73) and (60) (for \(\xi =Z\)) yield Eq. (13).

1.3 Eqs. (17)–(20)

Equations (16) and (8) imply that

$$\begin{aligned} I_{Gini}= & {} \int _{0}^{1}\left[ L^{-1}\left( u\right) -\bar{L}^{-1}\left( u\right) \right] du \nonumber \\= & {} \int _{0}^{1}\left\{ \left[ 1-\bar{L}^{-1}\left( 1-u\right) \right] -\bar{L} ^{-1}\left( u\right) \right\} du \nonumber \\= & {} 1-\int _{0}^{1}\bar{L}^{-1}\left( 1-u\right) du-\int _{0}^{1}\bar{L} ^{-1}\left( u\right) du \nonumber \\= & {} 1-2\int _{0}^{1}\bar{L}^{-1}\left( u\right) du. \end{aligned}$$
(74)

Equation (74) yields Eq. (17).

Using the change-of-variables \(u=\bar{F}_{Y}\left( t\right) \) and Eq. (6) we have

$$\begin{aligned} 2\int _{0}^{1}\bar{L}^{-1}\left( u\right) du= & {} 2\int _{0}^{\infty }\bar{L}^{-1} \left[ \bar{F}_{Y}\left( t\right) \right] f_{Y}\left( t\right) dt \nonumber \\= & {} 2\int _{0}^{\infty }\bar{F}_{X}\left( t\right) f_{Y}\left( t\right) dt. \end{aligned}$$
(75)

In turn, using Eq. (55) (for the random variable \(\xi =Y\) and \(n=2\)) we have

$$\begin{aligned} 2\int _{0}^{\infty }\bar{F}_{X}\left( t\right) f_{Y}\left( t\right) dt= & {} \int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }\left[ 2\bar{F}_{Y}\left( t\right) f_{Y}\left( t\right) \right] dt \nonumber \\= & {} \int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }f_{Y_{1}\wedge Y_{2}}\left( t\right) dt. \end{aligned}$$
(76)

Equations (75)–(76) imply that

$$\begin{aligned} 2\int _{0}^{1}\bar{L}^{-1}\left( u\right) du=\int _{0}^{\infty }\frac{\bar{F} _{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }f_{Y_{1}\wedge Y_{2}}\left( t\right) dt. \end{aligned}$$
(77)

Substituting Eq. (77) into Eq. (74) yields Eq. (20).

Equation (1) implies that

$$\begin{aligned} 2\int _{0}^{\infty }\bar{F}_{X}\left( t\right) f_{Y}\left( t\right) dt= & {} 2\int _{0}^{\infty }\bar{F}_{X}\left( t\right) \left[ \frac{t}{\mu } f_{X}\left( t\right) \right] dt \nonumber \\= & {} \frac{1}{\mu }\int _{0}^{\infty }t\left[ 2\bar{F}_{X}\left( t\right) f_{X}\left( t\right) \right] dt. \end{aligned}$$
(78)

In turn, using Eq. (55) (for the random variable \(\xi =X\) and \(n=2\)) we have:

$$\begin{aligned} \frac{1}{\mu }\int _{0}^{\infty }t\left[ 2\bar{F}_{X}\left( t\right) f_{X}\left( t\right) \right] dt= & {} \frac{1}{\mu }\int _{0}^{\infty }tf_{X_{1}\wedge X_{2}}\left( t\right) dt \nonumber \\= & {} \frac{1}{\mu }\mathbf {E}\left[ X_{1}\wedge X_{2}\right] . \end{aligned}$$
(79)

Equation (75) and Eqs. (78)–(79), together with the fact that \(\mathbf {E}\left[ X\right] =\mu \), imply that

$$\begin{aligned} 2\int _{0}^{1}\bar{L}^{-1}\left( u\right) du=\frac{\mathbf {E}\left[ X_{1}\wedge X_{2}\right] }{\mathbf {E}\left[ X\right] }. \end{aligned}$$
(80)

In turn, Eqs. (74) and (80) imply that

$$\begin{aligned} I_{Gini}=1-\frac{\mathbf {E}\left[ X_{1}\wedge X_{2}\right] }{\mathbf {E}\left[ X\right] }. \end{aligned}$$
(81)

Equations (81) and (57) (for \(\xi =X\)) yield Eq. (19). Equations (81) and (60) (for \(\xi =X\)) yield Eq. (18).

1.4 Eq. (21) and Eqs. (23)–(25)

Equation (7) implies the coincidence of Eq. (21):

$$\begin{aligned} \int _{0}^{1}\frac{\bar{L}\left( u\right) -u}{1-u}du= & {} \int _{0}^{1}\frac{\left[ 1-L\left( 1-u\right) \right] -u}{1-u}du \nonumber \\= & {} \int _{0}^{1}\frac{\left( 1-u\right) -L\left( 1-u\right) }{\left( 1-u\right) }du=\int _{0}^{1}\frac{u-L\left( u\right) }{u}du. \end{aligned}$$
(82)

Using the change-of-variables \(u=F_{X}\left( t\right) \) and Eq. (3) we have

$$\begin{aligned} \int _{0}^{1}\frac{L\left( u\right) }{u}du= & {} \int _{0}^{\infty }\frac{L\left[ F_{X}\left( t\right) \right] }{F_{X}\left( t\right) }f_{X}\left( t\right) dt\nonumber \\= & {} \int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) } f_{X}\left( t\right) dt. \end{aligned}$$
(83)

Equations (22) and (83) yield Eq. (25).

Using Eq. (1) we have

$$\begin{aligned} \frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) }= & {} \frac{1}{F_{X}\left( t\right) }\int _{0}^{t}f_{Y}\left( x\right) dx \nonumber \\= & {} \frac{1}{F_{X}\left( t\right) }\int _{0}^{t}\frac{x}{\mu }f_{X}\left( x\right) dx \nonumber \\= & {} \frac{1}{\mu }\int _{0}^{t}x\frac{f_{X}\left( x\right) }{F_{X}\left( t\right) }dx. \end{aligned}$$
(84)

The integral appearing on the bottom line of Eq. (84) is the conditional mean of the random variable X, given the information that \( X\le t\). Hence, Eq. (84) implies that

$$\begin{aligned} \frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) }=\frac{\mathbf {E}[X{{\vert } }X\le t]}{\mathbf {E}\left[ X\right] }. \end{aligned}$$
(85)

Substituting Eq. (85) into Eq. (83) yields

$$\begin{aligned} \int _{0}^{1}\frac{L\left( u\right) }{u}du=\int _{0}^{\infty }\frac{\mathbf {E} [X{{\vert } }X\le t]}{\mathbf {E}\left[ X\right] } f_{X}\left( t\right) dt. \end{aligned}$$
(86)

In turn, Eqs. (22) and (86) yield Eq. (24).

Note that

$$\begin{aligned} \int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) } f_{X}\left( t\right) dt= & {} \int _{0}^{\infty }F_{Y}\left( t\right) \frac{ f_{X}\left( t\right) }{F_{X}\left( t\right) }dt \nonumber \\= & {} \int _{0}^{\infty }\left[ \int _{0}^{t}f_{Y}\left( y\right) dy\right] \left\{ \ln \left[ F_{X}\left( t\right) \right] ^{\prime }\right\} dt \nonumber \\= & {} \int _{0}^{\infty }f_{Y}\left( y\right) \left( \int _{y}^{\infty }\left\{ \ln \left[ F_{X}\left( t\right) \right] ^{\prime }\right\} dt\right) dy \nonumber \\= & {} \int _{0}^{\infty }f_{Y}\left( y\right) \left\{ -\ln \left[ F_{X}\left( y\right) \right] \right\} dy \nonumber \\= & {} -\int _{0}^{\infty }f_{Y}\left( y\right) \ln \left[ F_{X}\left( y\right) \right] dy \end{aligned}$$
(87)

Using Eq. (1), and then Eq. (65) (for \(\xi =X\)), we have

$$\begin{aligned} -\int _{0}^{\infty }f_{Y}\left( s\right) \ln \left[ F_{X}\left( s\right) \right] ds= & {} -\int _{0}^{\infty }\frac{s}{\mu }f_{X}\left( s\right) \ln \left[ F_{X}\left( s\right) \right] ds \nonumber \\= & {} \frac{1}{\mathbf {E}\left[ X\right] }\left\{ -\int _{0}^{\infty }sf_{X}\left( s\right) \ln \left[ F_{X}\left( s\right) \right] ds\right\} \nonumber \\= & {} \frac{1}{\mathbf {E}\left[ X\right] }\left\{ \mathbf {E}\left[ X\right] -\int _{0}^{\infty }F_{X}\left( t\right) \ln \left[ 1/F_{X}\left( t\right) \right] dt\right\} \nonumber \\= & {} 1-\frac{1}{\mathbf {E}\left[ X\right] }\int _{0}^{\infty }F_{X}\left( t\right) \ln \left[ 1/F_{X}\left( t\right) \right] dt. \end{aligned}$$
(88)

Equation (83) and Eqs. (87)–(88) imply that

$$\begin{aligned} \int _{0}^{1}\frac{L\left( u\right) }{u}du=1-\frac{1}{\mathbf {E}\left[ X \right] }\int _{0}^{\infty }F_{X}\left( t\right) \ln \left[ 1/F_{X}\left( t\right) \right] dt. \end{aligned}$$
(89)

In turn, Eqs. (22) and (89) yield Eq. (23).

1.5 Eq. (26) and Eqs. (28)–(30)

Equation (8) implies the coincidence of Eq. (26):

$$\begin{aligned} \int _{0}^{1}\frac{L^{-1}\left( u\right) -u}{1-u}du= & {} \int _{0}^{1}\frac{\left[ 1-\bar{L}^{-1}\left( 1-u\right) \right] -u}{1-u}du \nonumber \\= & {} \int _{0}^{1}\frac{\left( 1-u\right) -\bar{L}^{-1}\left( 1-u\right) }{\left( 1-u\right) }du=\int _{0}^{1}\frac{u-\bar{L}^{-1}\left( u\right) }{u}du\text { . } \end{aligned}$$
(90)

Using the change-of-variables \(u=\bar{F}_{Y}\left( t\right) \) and Eq. (6) we have

$$\begin{aligned} \int _{0}^{1}\frac{\bar{L}^{-1}\left( u\right) }{u}du= & {} \int _{0}^{\infty }\frac{ \bar{L}^{-1}\left[ \bar{F}_{Y}\left( t\right) \right] }{\bar{F}_{Y}\left( t\right) }f_{Y}\left( t\right) dt \nonumber \\= & {} \int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }f_{Y}\left( t\right) dt. \end{aligned}$$
(91)

Equations (27) and (91) yield Eq. (30).

Using Eq. (1) we have

$$\begin{aligned} \frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }= & {} \frac{1}{ \bar{F}_{Y}\left( t\right) }\int _{t}^{\infty }f_{X}\left( y\right) dy \nonumber \\= & {} \frac{1}{\bar{F}_{Y}\left( t\right) }\int _{t}^{\infty }\frac{\mu }{y} f_{Y}\left( y\right) dy \nonumber \\= & {} \mu \int _{t}^{\infty }\frac{1}{y}\frac{f_{Y}\left( y\right) }{\bar{F} _{Y}\left( t\right) }dy. \end{aligned}$$
(92)

The integral appearing on the bottom line of Eq. (92) is the conditional mean of the random variable 1/Y, given the information that \( Y>t\). Note that, as Y is an absolutely continuous random variable, the information \(Y>t\) is effectively identical to the information \(Y\ge t\). Hence, using the fact that \(Z=1/Y\) and \(\mathbf {E}\left[ Z\right] =1/\mu \), Eq. (92) implies that

$$\begin{aligned} \frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }=\frac{ \mathbf {E}[1/Y{{\vert } }Y\ge t]}{\left( 1/\mu \right) }= \frac{\mathbf {E}[Z{{\vert } }Z\le 1/t]}{\mathbf {E}\left[ Z \right] }. \end{aligned}$$
(93)

Substituting Eq. (93) into Eq. (91), and using the change of variables \(s=1/t\) and the fact that \(Z=1/Y\), we have

$$\begin{aligned} \int _{0}^{1}\frac{\bar{L}^{-1}\left( u\right) }{u}du= & {} \int _{0}^{\infty }\frac{ \mathbf {E}[Z{{\vert } }Z\le 1/t]}{\mathbf {E}\left[ Z\right] }f_{Y}\left( t\right) dt \nonumber \\= & {} \int _{0}^{\infty }\frac{\mathbf {E}[Z{{\vert } }Z\le s]}{ \mathbf {E}\left[ Z\right] }\left[ f_{Y}\left( \frac{1}{s}\right) \frac{1}{ s^{2}}\right] ds \nonumber \\= & {} \int _{0}^{\infty }\frac{\mathbf {E}[Z{{\vert } }Z\le s]}{ \mathbf {E}\left[ Z\right] }f_{Z}\left( s\right) ds\text { .} \end{aligned}$$
(94)

In turn, Eqs. (27) and (94) yield Eq. (29).

Note that

$$\begin{aligned} \int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }f_{Y}\left( t\right) dt= & {} \int _{0}^{\infty }\bar{F}_{X}\left( t\right) \frac{f_{Y}\left( t\right) }{\bar{F}_{Y}\left( t\right) }dt \nonumber \\= & {} \int _{0}^{\infty }\left[ \int _{t}^{\infty }f_{X}\left( x\right) dx\right] \left\{ -\ln \left[ \bar{F}_{Y}\left( t\right) \right] ^{\prime }\right\} dt\nonumber \\= & {} -\int _{0}^{\infty }f_{X}\left( x\right) \left( \int _{0}^{x}\left\{ \ln \left[ \bar{F}_{Y}\left( t\right) \right] ^{\prime }\right\} dt\right) dx \nonumber \\= & {} -\int _{0}^{\infty }f_{X}\left( x\right) \ln \left[ \bar{F}_{Y}\left( x\right) \right] dx. \end{aligned}$$
(95)

Using Eq. (1), the change of variables \(s=1/x\), the fact that \(Z=1/Y\) and \(\mathbf {E}\left[ Z\right] =1/\mu \), and Eq. (65) (for \(\xi =Z\)), we have

$$\begin{aligned} -\int _{0}^{\infty }f_{X}\left( x\right) \ln \left[ \bar{F}_{Y}\left( x\right) \right] dx= & {} -\int _{0}^{\infty }\frac{\mu }{x}f_{Y}\left( x\right) \ln \left[ \bar{F}_{Y}\left( x\right) \right] dx \nonumber \\= & {} -\mu \int _{0}^{\infty }s\left[ f_{Y}\left( \frac{1}{s}\right) \frac{1}{s^{2} }\right] \ln \left[ \bar{F}_{Y}\left( \frac{1}{s}\right) \right] ds \nonumber \\= & {} \frac{1}{\mathbf {E}\left[ Z\right] }\left\{ -\int _{0}^{\infty }sf_{Z}\left( s\right) \ln \left[ F_{Z}\left( s\right) \right] ds\right\} \nonumber \\= & {} \frac{1}{\mathbf {E}\left[ Z\right] }\left\{ \mathbf {E}\left[ Z\right] -\int _{0}^{\infty }F_{Z}\left( t\right) \ln \left[ 1/F_{Z}\left( t\right) \right] dt\right\} \nonumber \\= & {} 1-\frac{1}{\mathbf {E}\left[ Z\right] }\int _{0}^{\infty }F_{Z}\left( t\right) \ln \left[ 1/F_{Z}\left( t\right) \right] dt. \end{aligned}$$
(96)

Equation (91) and Eqs. (95)–(96) imply that

$$\begin{aligned} \int _{0}^{1}\frac{\bar{L}^{-1}\left( u\right) }{u}du=1-\frac{1}{\mathbf {E} \left[ Z\right] }\int _{0}^{\infty }F_{Z}\left( t\right) \ln \left[ 1/F_{Z}\left( t\right) \right] dt. \end{aligned}$$
(97)

In turn, Eqs. (27) and (97) yield Eq. (28).

1.6 Eq. (32), Eq. (33), and Eq. (35)

For \(n=2\) note that

$$\begin{aligned} \max \left\{ \xi _{1},\xi _{2}\right\} +\min \left\{ \xi _{1},\xi _{2}\right\} =\xi _{1}+\xi _{2} \end{aligned}$$
(98)

and

$$\begin{aligned} \max \left\{ \xi _{1},\xi _{2}\right\} -\min \left\{ \xi _{1},\xi _{2}\right\} =\left| \xi _{1}-\xi _{2}\right| . \end{aligned}$$
(99)

Summing Equations (98) and (99) up we have

$$\begin{aligned} 2\max \left\{ \xi _{1},\xi _{2}\right\} =\xi _{1}+\xi _{2}+\left| \xi _{1}-\xi _{2}\right| . \end{aligned}$$
(100)

Applying expectation to Eq. (100) implies that

$$\begin{aligned} 2\mathbf {E}\left[ \xi _{1}\vee \xi _{2}\right]= & {} 2\mathbf {E}\left[ \max \left\{ \xi _{1},\xi _{2}\right\} \right] \nonumber \\= & {} \mathbf {E}\left[ \xi _{1}\right] +\mathbf {E}\left[ \xi _{2}\right] +\mathbf { E}\left[ \left| \xi _{1}-\xi _{2}\right| \right] \nonumber \\= & {} 2\mathbf {E}\left[ \xi \right] +\mathbf {E}\left[ \left| \xi _{1}-\xi _{2}\right| \right] , \end{aligned}$$
(101)

and hence

$$\begin{aligned} \mathbf {E}\left[ \xi _{1}\vee \xi _{2}\right] -\mathbf {E}\left[ \xi \right] = \frac{1}{2}\mathbf {E}\left[ \left| \xi _{1}-\xi _{2}\right| \right] . \end{aligned}$$
(102)

Substituting Eq. (102) into Eq. (31) yields Eq. (32).

Using Eqs. (51) and (52) we have

$$\begin{aligned} \mathbf {E}\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right]= & {} \int _{0}^{\infty } \left[ 1-F_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( t\right) \right] dt \nonumber \\= & {} \int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) ^{n}\right] dt. \end{aligned}$$
(103)

In turn, using Equations (103) and (51) we have

$$\begin{aligned}&\mathbf {E}\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right] -\mathbf {E}\left[ \xi \right] \nonumber \\&\quad =\int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) ^{n}\right] dt-\int _{0}^{\infty }\left[ 1-F_{\xi }\left( t\right) \right] dt \nonumber \\&\quad =\int _{0}^{\infty }\left\{ \left[ 1-F_{\xi }\left( t\right) ^{n}\right] - \left[ 1-F_{\xi }\left( t\right) \right] \right\} dt \nonumber \\&\quad =\int _{0}^{\infty }\left[ F_{\xi }\left( t\right) -F_{\xi }\left( t\right) ^{n}\right] dt. \end{aligned}$$
(104)

Substituting Eq. (104) into Eq. (31) yields Eq. (33).

Equation (31) implies that

$$\begin{aligned} 1-I_{n}\left( \xi \right)= & {} 1-\frac{\mathbf {E}\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right] -\mathbf {E}\left[ \xi \right] }{n\mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi \right] } \nonumber \\= & {} \frac{n\mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi \right] -\mathbf {E }\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right] +\mathbf {E}\left[ \xi \right] }{n\mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi \right] } \nonumber \\= & {} \frac{n\mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right] }{\left( n-1\right) \mathbf {E}\left[ \xi \right] }. \end{aligned}$$
(105)

Using Eqs. (51) and (53) we have

$$\begin{aligned}&n\mathbf {E}\left[ \xi \right] -\mathbf {E}\left[ \xi _{1}\vee \cdots \vee \xi _{n}\right] \nonumber \\&\quad =n\int _{0}^{\infty }sf_{\xi }\left( s\right) ds-\int _{0}^{\infty }sf_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( s\right) ds \nonumber \\&\quad =n\int _{0}^{\infty }sf_{\xi }\left( s\right) ds-\int _{0}^{\infty }s\left[ nF_{\xi }\left( s\right) ^{n-1}f_{\xi }\left( s\right) \right] ds \nonumber \\&\quad =n\int _{0}^{\infty }sf_{\xi }\left( s\right) \left[ 1-F_{\xi }\left( s\right) ^{n-1}\right] ds \nonumber \\&\quad =n\int _{0}^{\infty }sf_{\xi }\left( s\right) \left[ \int _{s}^{\infty }\left( n-1\right) F_{\xi }\left( t\right) ^{n-2}f_{\xi }\left( t\right) dt\right] ds \nonumber \\&\quad =\left( n-1\right) \int _{0}^{\infty }\left[ \int _{0}^{t}s\frac{f_{\xi }\left( s\right) }{F_{\xi }\left( t\right) }ds\right] \left[ nF_{\xi }\left( t\right) ^{n-1}f_{\xi }\left( t\right) \right] dt \nonumber \\&\quad =\left( n-1\right) \int _{0}^{\infty }\left[ \int _{0}^{t}s\frac{f_{\xi }\left( s\right) }{F_{\xi }\left( t\right) }ds\right] f_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( t\right) dt \nonumber \\&\quad =\left( n-1\right) \int _{0}^{\infty }\mathbf {E}[\xi {{\vert } }\xi \le t]f_{\xi _{1}\vee \cdots \vee \xi _{n}}\left( t\right) dt. \end{aligned}$$
(106)

Substituting Eq. (106) into Eq. (105) yields Eq. (35).

1.7 Eqs. (36)–(39)

Differentiating Eq. (3) with respect to the variable t implies that

$$\begin{aligned} L^{\prime }\left[ F_{X}\left( t\right) \right] f_{X}\left( t\right) =f_{Y}\left( t\right) . \end{aligned}$$
(107)

Equations (107) and (1) imply that

$$\begin{aligned} L^{\prime }\left[ F_{X}\left( t\right) \right] =\frac{t}{\mu }\text { .} \end{aligned}$$
(108)

Using Eqs. (51) and (53) (for \(\xi =X\)), then Eq. (108), and then the change-of-variables \(u=F_{X}\left( t\right) \), we have

$$\begin{aligned} \mathbf {E}\left[ X_{1}\vee \cdots \vee X_{n}\right]= & {} \int _{0}^{\infty }tf_{X_{1}\vee \cdots \vee X_{n}}\left( t\right) dt \nonumber \\= & {} \mathbf {E}\left[ X\right] \int _{0}^{\infty }\frac{t}{\mu }\left[ nF_{X}\left( t\right) ^{n-1}f_{X}\left( t\right) \right] dt \nonumber \\= & {} \mathbf {E}\left[ X\right] \int _{0}^{\infty }L^{\prime }\left[ F_{X}\left( t\right) \right] \left[ nF_{X}\left( t\right) ^{n-1}f_{X}\left( t\right) \right] dt \nonumber \\= & {} \mathbf {E}\left[ X\right] \int _{0}^{1}L^{\prime }\left( u\right) nu^{n-1}du \nonumber \\= & {} \mathbf {E}\left[ X\right] n\left\{ \left[ 1-0\right] -\int _{0}^{1}L\left( u\right) \left( n-1\right) u^{n-2}du\right\} \nonumber \\= & {} n\mathbf {E}\left[ X\right] \left\{ 1-\left( n-1\right) \int _{0}^{1}u^{n-2}L\left( u\right) du\right\} \text { , } \end{aligned}$$
(109)

and hence

$$\begin{aligned}&n\mathbf {E}\left[ X\right] -\mathbf {E}\left[ X_{1}\vee \cdots \vee X_{n} \right] \nonumber \\&\quad =\left( n-1\right) \mathbf {E}\left[ X\right] \cdot n\int _{0}^{1}u^{n-2}L\left( u\right) du. \end{aligned}$$
(110)

Substituting Eq. (110) into Eq. (105) (for \(\xi =X\)) yields Eq. (36). Using the change-of-variables \(u=F_{X}\left( t\right) \) and Eq. (3), and then using Eq. (53) (for \(\xi =X\)), we have

$$\begin{aligned}&n\int _{0}^{1}u^{n-2}L\left( u\right) du \nonumber \\&\quad =n\int _{0}^{\infty }F_{X}\left( t\right) ^{n-2}L\left[ F_{X}\left( t\right) \right] f_{X}\left( t\right) dt \nonumber \\&\quad =n\int _{0}^{\infty }F_{X}\left( t\right) ^{n-2}F_{Y}\left( t\right) f_{X}\left( t\right) dt \nonumber \\&\quad =\int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) }\left[ nF_{X}\left( t\right) ^{n-1}f_{X}\left( t\right) \right] dt \nonumber \\&\quad =\int _{0}^{\infty }\frac{F_{Y}\left( t\right) }{F_{X}\left( t\right) } f_{X_{1}\vee \cdots \vee X_{n}}\left( t\right) dt. \end{aligned}$$
(111)

Substituting Eq. (111) into Eq. (36) yields Eq. (38).

Differentiating Eq. (6) with respect to the variable t implies that

$$\begin{aligned} \left( \bar{L}^{-1}\right) ^{\prime }\left[ \bar{F}_{Y}\left( t\right) \right] f_{Y}\left( t\right) =f_{X}\left( t\right) \text { .} \end{aligned}$$
(112)

Equations (112) and (1) imply that

$$\begin{aligned} \left( \bar{L}^{-1}\right) ^{\prime }\left[ \bar{F}_{Y}\left( t\right) \right] =\frac{\mu }{t}. \end{aligned}$$
(113)

As \(Z=1/Y\), note that \(Z_{1}\vee \cdots \vee Z_{n}=1/\left( Y_{1}\wedge \cdots \wedge Y_{n}\right) \). Consequently, using Eqs. (51) and (55) (for \(\xi =Y\)), then Eq. (113) and the fact that \(\mathbf {E} \left[ Z\right] =1/\mu \), and then the change-of-variables \(u=\bar{F} _{Y}\left( t\right) \), we have

$$\begin{aligned} \mathbf {E}\left[ Z_{1}\vee \cdots \vee Z_{n}\right]= & {} \mathbf {E}\left[ 1/\left( Y_{1}\wedge \cdots \wedge Y_{n}\right) \right] \nonumber \\= & {} \int _{0}^{\infty }\frac{1}{t}f_{Y_{1}\wedge \cdots \wedge Y_{n}}\left( t\right) dt=\int _{0}^{\infty }\frac{1}{t}\left[ n\bar{F}_{Y}\left( t\right) ^{n-1}f_{Y}\left( t\right) \right] dt \nonumber \\= & {} \mathbf {E}\left[ Z\right] \int _{0}^{\infty }\frac{\mu }{t}\left[ n\bar{F} _{Y}\left( t\right) ^{n-1}f_{Y}\left( t\right) \right] dt \nonumber \\= & {} \mathbf {E}\left[ Z\right] \int _{0}^{\infty }\left\{ \left( \bar{L} ^{-1}\right) ^{\prime }\left[ \bar{F}_{Y}\left( t\right) \right] \right\} \left[ n\bar{F}_{Y}\left( t\right) ^{n-1}f_{Y}\left( t\right) \right] dt \nonumber \\= & {} \mathbf {E}\left[ Z\right] \int _{0}^{1}\left[ \left( \bar{L}^{-1}\right) ^{\prime }\left( u\right) \right] nu^{n-1}du \nonumber \\= & {} \mathbf {E}\left[ Z\right] n\left\{ \left[ 1-0\right] -\int _{0}^{1}\bar{L} ^{-1}\left( u\right) \left( n-1\right) u^{n-2}du\right\} \nonumber \\= & {} n\mathbf {E}\left[ Z\right] \left\{ 1-\left( n-1\right) \int _{0}^{1}u^{n-2} \bar{L}^{-1}\left( u\right) du\right\} , \end{aligned}$$
(114)

and hence

$$\begin{aligned}&n\mathbf {E}\left[ Z\right] -\mathbf {E}\left[ Z_{1}\vee \cdots \vee Z_{n} \right] \nonumber \\&\quad =\left( n-1\right) \mathbf {E}\left[ Z\right] \cdot n\int _{0}^{1}u^{n-2}\bar{L }^{-1}\left( u\right) du. \end{aligned}$$
(115)

Substituting Eq. (115) into Eq. (105) (for \(\xi =Z\)) yields Eq. (37). Using the change-of-variables \(u=\bar{F}_{Y}\left( t\right) \) and Eq. (6), and then using Eq. (55) (for \(\xi =Y\)), we have

$$\begin{aligned}&n\int _{0}^{1}u^{n-2}\bar{L}^{-1}\left( u\right) du \nonumber \\&\quad =n\int _{0}^{\infty }\bar{F}_{Y}\left( t\right) ^{n-2}\bar{L}^{-1}\left[ \bar{ F}_{Y}\left( t\right) \right] f_{Y}\left( t\right) dt \nonumber \\&\quad =n\int _{0}^{\infty }\bar{F}_{Y}\left( t\right) ^{n-2}\bar{F}_{X}\left( t\right) f_{Y}\left( t\right) dt \nonumber \\&\quad =\int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }\left[ n\bar{F}_{Y}\left( t\right) ^{n-1}f_{Y}\left( t\right) \right] dt \nonumber \\&\quad =\int _{0}^{\infty }\frac{\bar{F}_{X}\left( t\right) }{\bar{F}_{Y}\left( t\right) }f_{Y_{1}\wedge \cdots \wedge Y_{n}}\left( t\right) dt. \end{aligned}$$
(116)

Substituting Eq. (116) into Eq. (37) yields Eq. (39).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliazar, I., Giorgi, G.M. From Gini to Bonferroni to Tsallis: an inequality-indices trek. METRON 78, 119–153 (2020). https://doi.org/10.1007/s40300-020-00171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-020-00171-9

Keywords

Navigation