Skip to main content
Log in

The Pathophysiological Role of NOX2 in Hypertension and Organ Damage

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

NADPH oxidases (NOXs) represent one of the major sources of reactive oxygen species in the vascular district. Reactive oxygen species are responsible for vascular damage that leads to several cardiovascular pathological conditions. Among NOX isoforms, NOX2 is widely expressed in many cells types, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells, confirming its pivotal role in vascular pathophysiology. Studies in mice models with systemic deletion of NOX2, as well as in transgenic mice overexpressing NOX2, have demonstrated the undeniable involvement of NOX2 in the development of hypertension, atherosclerosis, diabetes mellitus, cardiac hypertrophy, platelet aggregation, and aging. Of note, the inhibition of NOX2 has been found to be protective for cardiovascular homeostasis. Here, we review the evidence demonstrating that the modulation of NOX2 activity is able to improve vascular physiology, suggesting that NOX2 may be a potential target for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arter Thromb Vasc Biol. 2005;25:29–38.

    Article  CAS  Google Scholar 

  2. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  3. Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflügers Arch. 2010;459:923–39.

    Article  PubMed  Google Scholar 

  4. Li J-M, Mullen AM, Yun S, et al. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res. 2002;90:143–50.

    Article  CAS  PubMed  Google Scholar 

  5. Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II: role of the p47phox subunit. J Biol Chem. 2003;278:12094–100.

    Article  CAS  PubMed  Google Scholar 

  6. Görlach A, Brandes RP, Nguyen K, et al. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000;87:26–32.

    Article  PubMed  Google Scholar 

  7. Ushio-Fukai M, Tang Y, Fukai T, et al. Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2002;91:1160–7.

    Article  CAS  PubMed  Google Scholar 

  8. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  9. Meijles DN, Fan LM, Ghazaly MM, et al. p22phox C242T SNP inhibits inflammatory oxidative damage to endothelial cells and vessels. Circulation. 2016;133(24):2391–403.

    Article  CAS  PubMed  Google Scholar 

  10. Carnevale R, Loffredo L, Nocella C, et al. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. Oxid Med Cell Longev. 2014;2014:691015.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Loffredo L, Perri L, Catasca E, et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease. J Am Heart Assoc. 2014;3:e001072.

    Article  PubMed  PubMed Central  Google Scholar 

  12. El Jamali A, Valente AJ, Clark RA. Regulation of phagocyte NADPH oxidase by hydrogen peroxide through a Ca2+/c-Abl signaling pathway. Free Radic Biol Med. 2010;48:798–810.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dinauer M, Orkin S, Brown R, et al. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature. 1987;717:720.

    Google Scholar 

  14. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39.

    Article  CAS  PubMed  Google Scholar 

  15. Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal. 2005;7(3–4):308–17.

  16. Touyz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res. 2002;90:1205–13.

    Article  CAS  PubMed  Google Scholar 

  17. Seno T, Inoue N, Gao D, et al. Involvement of NADH/NADPH oxidase in human platelet ROS production. Thromb Res. 2001;103:399–409.

    Article  CAS  PubMed  Google Scholar 

  18. Pignatelli P, Sanguigni V, Lenti L, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation. 2004;110:1326–9.

    Article  CAS  PubMed  Google Scholar 

  19. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113:343–55.

    Article  CAS  PubMed  Google Scholar 

  20. Han CH, Freeman JLR, Lee T, et al. Regulation of the neutrophil respiratory burst oxidase: identification of an activation domain in p67(phox). J Biol Chem. 1998;273:16663–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pollock JD, Williams DA, Gifford MA, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995;9:202–9.

    Article  CAS  PubMed  Google Scholar 

  22. Quie PG, White JG, Holmes B, Good RA. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest. 1967;46:668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pignatelli P, Carnevale R, Di Santo S, et al. Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler Thromb Vasc Biol. 2011;31:423–34.

    Article  CAS  PubMed  Google Scholar 

  24. Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol. 1994;11:95–102.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson GM, Dourron HM, Liu J, et al. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res. 2003;92:637–43.

    Article  CAS  PubMed  Google Scholar 

  26. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest. 1996;97:1916–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mollnau H, Wendt M, Szöcs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90:E58–65.

    Article  PubMed  Google Scholar 

  28. Carlström M, Lai EY, Ma Z, et al. Role of NOX2 in the regulation of afferent arteriole responsiveness. Am J Physiol Regul Integr Comp Physiol. 2009;296:R72–9.

    Article  PubMed  Google Scholar 

  29. Jung O, Schreiber JG, Geiger H, et al. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation. 2004;109:1795–801.

    Article  CAS  PubMed  Google Scholar 

  30. Murdoch CE, Alom-Ruiz SP, Wang M, et al. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol. 2011;106:527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bendall JK, Rinze R, Adlam D, et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res. 2007;100:1016–25.

    Article  CAS  PubMed  Google Scholar 

  32. Landmesser U, Cai H, Dikalov S, et al. Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Touyz RM, Mercure C, He Y, et al. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension. 2005;45:530–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wang HD, Xu S, Johns DG, et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res. 2001;88:947–53.

    Article  CAS  PubMed  Google Scholar 

  35. Somers MJ, Mavromatis K, Galis ZS, Harrison DG. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 2000;101:1722–8.

    Article  CAS  PubMed  Google Scholar 

  36. Brooks S, Branyan D, Kayla A, et al. Pharmacological inhibition of NAD(P)H oxidase with the peptide gp91ds-tat during ischemic stroke reduces infarct volume and improves vascular reactivity in obese Zucker rats. FASEB J. 2016;30:953–1013.

    Google Scholar 

  37. Girouard H, Park L, Anrather J, et al. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb. Vasc Biol. 2006;26:826–32.

    Article  CAS  PubMed  Google Scholar 

  38. Chrissobolis S, Banfi B, Sobey CG, Faraci FM. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. J Appl Physiol. 2012;113:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan SL, Baumbach GL. Nox2 deficiency prevents hypertension-induced vascular dysfunction and hypertrophy in cerebral arterioles. Int J Hypertens. 2013;2013:793630.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wind S, Knut B, Armitage ME, et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension. 2010;56:490–7.

    Article  CAS  PubMed  Google Scholar 

  41. Rey FE, Cifuentes ME, Kiarash, et al. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res. 2001;89:408–14.

    Article  CAS  PubMed  Google Scholar 

  42. Sellers KW, Sun C, Diez-Freire C, et al. Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J. 2005;19:626–8.

    CAS  PubMed  Google Scholar 

  43. Zhou X, Bohlen HG, Miller SJ, Unthank JL. NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo. Am J Physiol Heart Circ Physiol. 2008;295:H1008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou MS, Schulman IH, Pagano PJ, et al. Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin II, atherogenesis, and blood pressure. Hypertension. 2006;47:81–6.

    Article  CAS  PubMed  Google Scholar 

  45. Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA. 1996;93:9114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.

    Article  CAS  PubMed  Google Scholar 

  47. Barry-Lane PA, Patterson C, Van Der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J Clin Invest. 2001;108:1513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Judkins CP, Diep H, Broughton BRS, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol Heart Circ Physiol. 2010;298:H24–32.

    Article  CAS  PubMed  Google Scholar 

  49. Kirk EA, Dinauer MC, Rosen H, et al. Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2000;20:1529–35.

    Article  CAS  PubMed  Google Scholar 

  50. Hsich E, Segal BH, Pagano PJ, et al. Vascular effects following homozygous disruption of p47(phox): an essential component of NADPH oxidase. Circulation. 2000;101:1234–6.

    Article  CAS  PubMed  Google Scholar 

  51. Quesada IM, Lucero A, Amaya C, et al. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis. 2015;242:469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dourron HM, Jacobson GM, Park JL, et al. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol. 2005;288:H946–53.

    Article  CAS  PubMed  Google Scholar 

  53. Weaver M, Liu J, Pimentel D, et al. Adventitial delivery of dominant-negative p67phox attenuates neointimal hyperplasia of the rat carotid artery. Am J Physiol Heart Circ Physiol. 2006;290:H1933–41.

    Article  CAS  PubMed  Google Scholar 

  54. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  55. Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.

    Article  CAS  PubMed  Google Scholar 

  56. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–22.

    Article  CAS  PubMed  Google Scholar 

  57. Xiang FL, Lu X, Strutt B, et al. NOX2 deficiency protects against streptozotocin-induced beta-cell destruction and development of diabetes in mice. Diabetes. 2010;59:2603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang M, Ay LK, Anilkumar N, et al. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation. 2006;113:1235–43.

    Article  CAS  PubMed  Google Scholar 

  59. Sukumar P, Viswambharan H, Imrie H, et al. Nox2 NADPH oxidase has a critical role in insulin resistance-related endothelial cell dysfunction. Diabetes. 2013;62:2130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lynch CM, Kinzenbaw DA, Chen X, et al. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke. 2013;44:3195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bendall JK, Cave AC, Heymes C, et al. Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation. 2002;105:293–6.

    Article  CAS  PubMed  Google Scholar 

  62. Satoh M, Ogita H, Takeshita K, et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A. 2006;103:7432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Häuselmann S, Rosc-Schlüter BI, Lorenz V, et al. b1-Integrin is upregulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free Radic Biol Med. 2011;51:609–18.

  64. Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001;37:676–85.

    Article  CAS  PubMed  Google Scholar 

  65. Patel VB, Bodiga S, Fan D, et al. Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension. 2012;59:1195–203.

    Article  CAS  PubMed  Google Scholar 

  66. Byrne JA, Grieve DJ, Bendall JK, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res. 2003;93:802–4.

    Article  CAS  PubMed  Google Scholar 

  67. Grieve DJ, Byrne JA, Siva A, et al. Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol. 2006;47:817–26.

    Article  CAS  PubMed  Google Scholar 

  68. Johar S, Cave AC, Narayanapanicker A, et al. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–8.

    Article  CAS  PubMed  Google Scholar 

  69. Krijnen PAJ, Meischl C, Hack CE, et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol. 2003;56:194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukui T, Yoshiyama M, Hanatani A, et al. Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun. 2001;281:1200–6.

    Article  CAS  PubMed  Google Scholar 

  71. Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension. 2008;51:319–25.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao Y, McLaughlin D, Robinson E, et al. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res. 2010;70:9287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Falco E, Roberto C, Pagano F, et al. Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial progenitor cells. Mech Ageing Dev. 2016;159:37–43.

    Article  PubMed  Google Scholar 

  74. Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007;38:3000–6.

    Article  CAS  PubMed  Google Scholar 

  75. Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab. 2009;29:1262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brait VH, Jackman KA, Walduck AK, et al. Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab. 2010;30:1306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001;58:4–43.

    Article  PubMed  Google Scholar 

  78. Carnevale R, Loffredo L, Sanguigni V, et al. Different degrees of NADPH oxidase 2 regulation and in vivo platelet activation: lesson from chronic granulomatous disease. J Am Heart Assoc. 2014;3(3):e000920.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Carnevale R, Bartimoccia S, Nocella C, et al. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis. 2014;237:108–16.

    Article  CAS  PubMed  Google Scholar 

  80. Walsh TG, Berndt MC, Carrim N, et al. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol. 2014;2:178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Delaney M, Kim K, Estevez B, et al. Differential roles of the nadph-oxidase 1 and 2 in platelet activation and thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:846–54.

    Article  CAS  PubMed  Google Scholar 

  82. Magwenzi S, Woodward C, Wraith KS, et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 2015;125:2693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Krötz F, Sohn HY, Gloe T, et al. NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood. 2002;100:917–24.

    Article  PubMed  Google Scholar 

  84. Dayal S, Wilson KM, Motto DG, et al. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation. 2013;127:1308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du J, Fan LM, Mai A, Li J-M. Crucial roles of Nox2-derived oxidative stress in deteriorating insulin receptor and endothelial function in dietary obesity of mice after middle age. Br J Pharmacol. 2013;170:1064–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paneni F, Osto E, Costantino S, et al. Deletion of the activated protein-1 transcription factor JunD induces oxidative stress and accelerates age-related endothelial dysfunction. Circulation. 2013;127:1229–40.

    Article  CAS  PubMed  Google Scholar 

  87. Turgeon J, Haddad P, Dussault S, et al. Protection against vascular aging in Nox2-deficient mice: impact on endothelial progenitor cells and reparative neovascularization. Atherosclerosis. 2012;223:122–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932–43.

    Article  CAS  PubMed  Google Scholar 

  89. Barton M. Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis. Pflugers Arch. 2010;460:825–37.

    Article  CAS  PubMed  Google Scholar 

  90. Meyer MR, Fredette NC, Barton M, Prossnitz ER. Endothelin-1 but not angiotensin II contributes to functional aging in murine carotid arteries. Life Sci. 2014;118:213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Loffredo L, Perri L, Nocella C, Violi F. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra-virgin olive oil and cocoa. Br J Clin Pharmacol. 2016. doi:10.1111/bcp.12923.

  92. Carnevale R, Pignatelli P, Nocella C, et al. Extra virgin olive oil blunt post-prandial oxidative stress via NOX2 down-regulation. Atherosclerosis. 2014;235:649–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Sciarretta.

Ethics declarations

Funding

This work was partially supported by a grant from the Italian Ministry of Health (GR-2013-02355401) to SS and RC.

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

M. Forte and C. Nocella equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forte, M., Nocella, C., De Falco, E. et al. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High Blood Press Cardiovasc Prev 23, 355–364 (2016). https://doi.org/10.1007/s40292-016-0175-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-016-0175-y

Keywords

Navigation