Skip to main content
Log in

Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

A Correction to this article was published on 26 October 2023

This article has been updated

Abstract

Neurodegenerative diseases (NDs) such as dementia, Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis are some of the most prevalent disorders currently afflicting healthcare systems. Many of these diseases share similar pathological hallmarks, including elevated oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation, all of which contribute to the deterioration of the nervous system’s structure and function. The development of diagnostic and therapeutic materials in the monitoring and treatment of these diseases remains challenging. One of the biggest challenges facing therapeutic and diagnostic materials is the blood–brain barrier (BBB). The BBB is a multifunctional membrane possessing a plethora of biochemical, cellular, and immunological features that ensure brain homeostasis by preventing the entry and accumulation of unwanted compounds. With regards to neurodegenerative diseases, the recent application of tailored nanomaterials (nanocarriers and nanoparticles) has led to advances in diagnostics and therapeutics. In this review, we provide an overview of commonly used nanoparticles and their applications in NDs, which may offer new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016, with permission from ref. [132]

Fig. 3
Fig. 4

Copyright 2019, with permission from ref. [124]

Similar content being viewed by others

Change history

References

  1. Terreros-Roncal J, Moreno-Jiménez EP, Flor-García M, Rodríguez-Moreno CB, Trinchero MF, Cafini F, et al. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science. 2021;374(6571):1106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693–714.

    Article  CAS  PubMed  Google Scholar 

  3. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954–63.

    Article  CAS  PubMed  Google Scholar 

  4. Cenini G, Lloret A, Cascella R. Oxidative stress and mitochondrial damage in neurodegenerative diseases: from molecular mechanisms to targeted therapies. Oxidative Med Cell Longevity. 2020;2020:1270256.

    Article  Google Scholar 

  5. Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol. 2022;214: 102270.

    Article  CAS  PubMed  Google Scholar 

  6. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng JC, Chen S. Translational neurodegeneration in the era of fast growing international brain research. Transl Neurodegener. 2022;11(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mistretta M, Farini A, Torrente Y, Villa C. Multifaceted nanoparticles: emerging mechanisms and therapies in neurodegenerative diseases. Brain. 2023. https://doi.org/10.1093/brain/awad014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Janicki Hsieh S, Alexopoulou Z, Mehrotra N, Struyk A, Stoch SA. Neurodegenerative diseases: the value of early predictive end points. Clin Pharmacol Ther. 2022;111(4):835–9.

    Article  PubMed  Google Scholar 

  10. Fang Y, Wang J, Zhao M, Zheng Q, Ren C, Wang Y, et al. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J Med Chem. 2022;65(17):11454–77.

    Article  CAS  PubMed  Google Scholar 

  11. Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran SV. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med. 2023;8(1): e10367.

    Article  CAS  PubMed  Google Scholar 

  12. Segarra M, Aburto MR, Acker-Palmer A. Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. 2021;44(5):393–405.

    Article  CAS  PubMed  Google Scholar 

  13. Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discovery. 2021;20(5):362–83.

    Article  CAS  PubMed  Google Scholar 

  14. Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X. Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small. 2017;13(43):1701921.

    Article  Google Scholar 

  15. Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020;8(15):4109–28.

    Article  CAS  PubMed  Google Scholar 

  16. Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother. 2019;111:666–75.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen TT, Vo TK, Vo GV. Therapeutic strategies and nano-drug delivery applications in management of aging Alzheimer’s disease. Adv Exp Med Biol. 2021;1286:183–98.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen TT, Nguyen TTD, Tran NM, Van Vo G. Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res. 2021. https://doi.org/10.1007/s11064-021-03488-7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nguyen TT, Dung Nguyen TT, Vo TK, Tran NM, Nguyen MK, Van Vo T, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143: 112117.

    Article  CAS  PubMed  Google Scholar 

  20. Murphy CJ. Materials science. Nanocubes and nanoboxes. Science. 2002;298(5601):2139–41.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou S, Zhu Y, Yao X, Liu H. Carbon nanoparticles inhibit the aggregation of prion protein as revealed by experiments and atomistic simulations. J Chem Inf Model. 2019;59(5):1909–18.

    Article  CAS  PubMed  Google Scholar 

  22. Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008;13(2):199–223.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen TT, Nguyen TTD, Nguyen TKO, Vo TK, Vo VG. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed Pharmacother. 2021;139: 111623.

    Article  CAS  PubMed  Google Scholar 

  24. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14.

    Article  CAS  PubMed  Google Scholar 

  25. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Nanomed Nanobiotechnol. 2012;4(2):219–33.

    Article  CAS  Google Scholar 

  26. Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord. 2018;19(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv. 2013;4(6):687–704.

    Article  CAS  PubMed  Google Scholar 

  28. Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, et al. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine. 2015;11(3):751–67.

    Article  CAS  PubMed  Google Scholar 

  29. Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T, et al. Delivery of nanoparticles for treatment of brain tumor. Curr Drug Metab. 2016;17(8):745–54.

    Article  CAS  PubMed  Google Scholar 

  30. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.

    Article  CAS  PubMed  Google Scholar 

  31. Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer’s disease: from discovery to clinical relevance. Pharmacol Ther. 2022;234: 108119.

    Article  CAS  PubMed  Google Scholar 

  32. Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood-brain barrier: a historical point of view. Anat Rec B New Anat. 2006;289(1):3–8.

    Article  PubMed  Google Scholar 

  33. Cuny GD. Neurodegenerative diseases: challenges and opportunities. Future Med Chem. 2012;4(13):1647–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, et al. Overcoming blood-brain barrier transport: advances in nanoparticle-based drug delivery strategies. Mater Today. 2020;37:112–25.

    Article  CAS  Google Scholar 

  35. Han Y, Gao C, Wang H, Sun J, Liang M, Feng Y, et al. Macrophage membrane-coated nanocarriers co-modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioactive Mater. 2021;6(2):529–42.

    Article  CAS  Google Scholar 

  36. Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967–3014.

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi M, Tomita M, Awazu S. Transcellular and paracellular contribution to transport processes in the colorectal route. Adv Drug Deliv Rev. 1997;28(2):191–204.

    Article  CAS  Google Scholar 

  38. Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979;279(5715):679–85.

    Article  CAS  PubMed  Google Scholar 

  39. Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol. 2017;35(10):937–53.

    Article  CAS  PubMed  Google Scholar 

  40. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877–903.

    Article  CAS  PubMed  Google Scholar 

  41. Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):1801362.

    Article  Google Scholar 

  42. Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, et al. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines. 2020. https://doi.org/10.3390/biomedicines8010013.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xing ZC, Chang Y, Kang IK. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Sci Technol Adv Mater. 2010;11(1): 014101.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hasannejad-Asl B, Pooresmaeil F, Choupani E, Dabiri M, Behmardi A, Fadaie M, et al. Nanoparticles as powerful tools for crossing the blood-brain barrier. CNS Neurol Disord. 2023;22(1):18–26.

    Article  CAS  Google Scholar 

  45. Deng J, Yu P, Wang Y, Yang L, Mao L. Visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges. Adv Mater. 2014;26(40):6933–43.

    Article  CAS  PubMed  Google Scholar 

  46. Meola A, Rao J, Chaudhary N, Sharma M, Chang SD. Gold nanoparticles for brain tumor imaging: a systematic review. Front Neurol. 2018;9:328.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hou K, Zhao J, Wang H, Li B, Li K, Shi X, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun. 2020;11(1):4790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Liu R, Zhang D, Zhang Z, Zhu J, Xu L, et al. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease. Colloids Surf, B. 2021;200: 111584.

    Article  CAS  Google Scholar 

  49. da Silva CE, de Bem SG, Scussel R, Correa M, da Silva AJ, Luiz GP, et al. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease. Colloids Surf B. 2020;196: 111302.

    Article  Google Scholar 

  50. Zuberek M, Stępkowski TM, Kruszewski M, Grzelak A. Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: study on proliferating and post-mitotic LUHMES cells. Mech Ageing Dev. 2018;171:7–14.

    Article  CAS  PubMed  Google Scholar 

  51. Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res. 2015;136:253–63.

    Article  CAS  PubMed  Google Scholar 

  52. Lim JV, Bee ST, Tin Sin L, Ratnam CT, Abdul Hamid ZA. A Review on the synthesis, properties, and utilities of functionalized carbon nanoparticles for polymer nanocomposites. Polymers. 2021;13(20):3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front Neurosci. 2016;10:250.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis. 2021;153: 105328.

    Article  CAS  PubMed  Google Scholar 

  55. Yang S-T, Guo W, Lin Y, Deng X-Y, Wang H-F, Sun H-F, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;111(48):17761–4.

    Article  CAS  Google Scholar 

  56. Aragon MJ, Topper L, Tyler CR, Sanchez B, Zychowski K, Young T, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci USA. 2017;114(10):E1968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv Coll Interface Sci. 2020;278: 102123.

    Article  CAS  Google Scholar 

  58. Mintz KJ, Mercado G, Zhou Y, Ji Y, Hettiarachchi SD, Liyanage PY, et al. Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids Surf B. 2019;176:488–93.

    Article  CAS  Google Scholar 

  59. Bukhari SNA. Nanotherapeutics for Alzheimer’s disease with preclinical evaluation and clinical trials: challenges, promises and limitations. Curr Drug Deliv. 2022;19(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  60. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018;7(12):490.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tanifum EA, Dasgupta I, Srivastava M, Bhavane RC, Sun L, Berridge J, et al. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS One. 2012;7(10): e48515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, et al. Intranasal H102 Peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32(12):3837–49.

    Article  CAS  PubMed  Google Scholar 

  63. Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomed. 2013;8:951–60.

    Article  Google Scholar 

  64. Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S, et al. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials. 2010;31(25):6519–29.

    Article  CAS  PubMed  Google Scholar 

  65. Ordóñez-Gutiérrez L, Re F, Bereczki E, Ioja E, Gregori M, Andersen AJ, et al. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine. 2015;11(2):421–30.

    Article  PubMed  Google Scholar 

  66. Sa F, Zhang LQ, Chong CM, Guo BJ, Li S, Zhang ZJ, et al. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci Lett. 2015;593:7–12.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang LQ, Sa F, Chong CM, Wang Y, Zhou ZY, Chang RC, et al. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J Ethnopharmacol. 2015;170:8–15.

    Article  CAS  PubMed  Google Scholar 

  68. Chen T, Li C, Li Y, Yi X, Wang R, Lee SM, et al. Small-sized mPEG-PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain uptake and anti-Parkinsonian activity. ACS Appl Mater Interfaces. 2017;9(11):9516–27.

    Article  CAS  PubMed  Google Scholar 

  69. Kardani K, Milani A, Shabani HS, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliver. 2019;16(11):1227–58.

    Article  CAS  Google Scholar 

  70. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–24.

    Article  CAS  PubMed  Google Scholar 

  71. Li J, Zhang X, Wang M, Li X, Mu H, Wang A, et al. Synthesis of a bi-functional dendrimer-based nanovehicle co-modified with RGDyC and TAT peptides for neovascular targeting and penetration. Int J Pharm. 2016;501(1–2):112–23.

    Article  CAS  PubMed  Google Scholar 

  72. Sharma G, Lakkadwala S, Modgil A, Singh J. The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. Int J Mol Sci. 2016;17(6):806.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Control Release. 2013;167(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  74. Crook ZR, Girard E, Sevilla GP, Merrill M, Friend D, Rupert PB, et al. A TfR-binding cystine-dense peptide promotes blood-brain barrier penetration of bioactive molecules. J Mol Biol. 2020;432(14):3989–4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arora S, Sharma D, Singh J. GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem Neurosci. 2020;11(11):1620–33.

    Article  CAS  PubMed  Google Scholar 

  76. Meloni BP, Craig AJ, Milech N, Hopkins RM, Watt PM, Knuckey NW. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cell Mol Neurobiol. 2014;34(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  77. Cardozo AK, Buchillier V, Mathieu M, Chen J, Ortis F, Ladrière L, et al. Cell-permeable peptides induce dose- and length-dependent cytotoxic effects. Biochem Biophys Acta. 2007;1768(9):2222–34.

    Article  CAS  PubMed  Google Scholar 

  78. Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  79. Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl. 2009;48(17):3030–59.

    Article  CAS  PubMed  Google Scholar 

  80. Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG. Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res. 2020. https://doi.org/10.1007/s11064-020-03031-0.

    Article  PubMed  Google Scholar 

  81. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci. 2020;21(9):3165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci. 2017;376:242–54.

    Article  CAS  PubMed  Google Scholar 

  83. Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. 2020;256: 117996.

    Article  CAS  PubMed  Google Scholar 

  84. Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med. 2016;16(3):247–53.

    Article  Google Scholar 

  85. Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ. 2019;367: l6217.

    Article  PubMed  Google Scholar 

  86. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saez-Atienzar S, Masliah E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci. 2020;21(8):433–44.

    Article  CAS  PubMed  Google Scholar 

  88. Han Q, Cai S, Yang L, Wang X, Qi C, Yang R, et al. Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater Interfaces. 2017;9(25):21116–23.

    Article  CAS  PubMed  Google Scholar 

  89. Muller AP, Ferreira GK, da Silva S, Nesi RT, de Bem SG, Mendes C, et al. Safety protocol for the gold nanoparticles administration in rats. Mater Sci Eng C Mater Biol Appl. 2017;77:1145–50.

    Article  CAS  PubMed  Google Scholar 

  90. Morales-Zavala F, Arriagada H, Hassan N, Velasco C, Riveros A, Álvarez AR, et al. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomedicine. 2017;13(7):2341–50.

    Article  CAS  PubMed  Google Scholar 

  91. Kim D, Kwon HJ, Hyeon T. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-β in Alzheimer’s disease. Adv Mater. 2019;31(19):1807965.

    Article  Google Scholar 

  92. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  PubMed  Google Scholar 

  93. Guo X, Lie Q, Liu Y, Jia Z, Gong Y, Yuan X, et al. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-Neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13(26):30261–73.

    Article  CAS  PubMed  Google Scholar 

  94. Sharma M, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S, Panda JJ. Self-fluorescent lone tryptophan nanoparticles as theranostic agents against Alzheimer’s disease. ACS Appl Mater Interfaces. 2022;14(11):13079–93.

    Article  CAS  PubMed  Google Scholar 

  95. Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurol. 2022;21(1):89–102.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat Rev Drug Discovery. 2018;17(11):804–22.

    Article  CAS  PubMed  Google Scholar 

  97. Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease—repurposed drugs and new approaches. Nat Rev Neurol. 2019;15(4):204–23.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nguyen TT, Bao NS, Van Vo G. Advances in hydrogel-based drug delivery systems for Parkinson’s disease. Neurochem Res. 2022;47(8):2129–41.

    Article  CAS  PubMed  Google Scholar 

  99. Zand Z, Khaki PA, Salihi A, Sharifi M, Qadir Nanakali NM, Alasady AA, et al. Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. Int J Nanomed. 2019;14:6989–7000.

    Article  CAS  Google Scholar 

  100. Ruotolo R, De Giorgio G, Minato I, Bianchi MG, Bussolati O, Marmiroli N. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s disease. Nanomaterials. 2020;10(2):235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu Z, Qu A, Wang W, Lu M, Shi B, Chen C, et al. Facet-dependent biodegradable Mn3O4 nanoparticles for ameliorating Parkinson’s disease. Adv Healthcare Mater. 2021;10(23):2101316.

    Article  CAS  Google Scholar 

  102. García-Pardo J, Novio F, Nador F, Cavaliere I, Suárez-García S, Lope-Piedrafita S, et al. Bioinspired theranostic coordination polymer nanoparticles for intranasal dopamine replacement in Parkinson’s disease. ACS Nano. 2021;15(5):8592–609.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, et al. TP10-dopamine conjugate as a potential therapeutic agent in the treatment of Parkinson’s disease. Bioconjug Chem. 2019;30(3):760–74.

    Article  CAS  PubMed  Google Scholar 

  104. Chen T, Liu W, Xiong S, Li D, Fang S, Wu Z, et al. Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl Mater Interfaces. 2019;11(48):45276–89.

    Article  CAS  PubMed  Google Scholar 

  105. Ahlawat J, Neupane R, Deemer E, Sreenivasan ST, Narayan M. Chitosan–ellagic acid nanohybrid for mitigating rotenone-induced oxidative stress. ACS Appl Mater Interfaces. 2020;12(16):18964–77.

    Article  CAS  PubMed  Google Scholar 

  106. Pichla M, Bartosz G, Stefaniuk I, Sadowska-Bartosz I. pH-responsive redox nanoparticles protect SH-SY5Y cells at lowered pH in a cellular model of Parkinson’s disease. Molecules. 2021;26(3):543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084–98.

    Article  PubMed  Google Scholar 

  108. Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21(5):465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol. 2021;17(2):104–18.

    Article  PubMed  Google Scholar 

  111. DeCoteau W, Heckman KL, Estevez AY, Reed KJ, Costanzo W, Sandford D, et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine. 2016;12(8):2311–20.

    Article  CAS  PubMed  Google Scholar 

  112. Leyton-Jaimes MF, Ivert P, Hoeber J, Han Y, Feiler A, Zhou C, et al. Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of ALS. Sci Rep. 2020;10(1):20675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marcuzzo S, Isaia D, Bonanno S, Malacarne C, Cavalcante P, Zacheo A, et al. FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from ALS mice. Cells. 2019;8(3).

  114. Medina DX, Chung EP, Teague CD, Bowser R, Sirianni RW. Intravenously administered, retinoid activating nanoparticles increase lifespan and reduce neurodegeneration in the SOD1(G93A) mouse model of ALS. Frontiers in Bioengineering and Biotechnology. 2020;8:224.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Teixeira MI, Lopes CM, Gonçalves H, Catita J, Silva AM, Rodrigues F, Amaral MH, Costa PC. Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the Brain. Pharmaceutics. 2022 Jan 13;14(1):185. https://doi.org/10.3390/pharmaceutics14010185.

  116. Ediriweera GR, Chen L, Yerbury JJ, Thurecht KJ, Vine KL. Non-viral vector-mediated gene therapy for ALS: challenges and future perspectives. Mol Pharm. 2021;18(6):2142–60.

    Article  CAS  PubMed  Google Scholar 

  117. Vonsattel JP, Keller C, Cortes Ramirez EP. Huntington’s disease—neuropathology. Handb Clin Neurol. 2011;100:83–100.

    Article  PubMed  Google Scholar 

  118. Claassen DO, Carroll B, De Boer LM, Wu E, Ayyagari R, Gandhi S, et al. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J Clin Movement Disord. 2017;4:3.

    Article  Google Scholar 

  119. Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington’s disease model mouse. ACS Appl Mater Interfaces. 2017;9(28):24126–39.

    Article  CAS  PubMed  Google Scholar 

  120. Wahyuningtyas D, Chen W-H, He R-Y, Huang Y-A, Tsao C-K, He Y-J, et al. Polyglutamine-specific gold nanoparticle complex alleviates mutant Huntingtin-induced toxicity. ACS Appl Mater Interfaces. 2021;13(51):60894–906.

    Article  CAS  PubMed  Google Scholar 

  121. Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241–57.

    Article  Google Scholar 

  122. Abdelfattah MS, Badr SEA, Lotfy SA, Attia GH, Aref AM, Abdel Moneim AE, et al. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox Res. 2020;37(1):77–92.

    Article  CAS  PubMed  Google Scholar 

  123. Cong W, Bai R, Li YF, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Interfaces. 2019;11(38):34725–35.

    Article  CAS  PubMed  Google Scholar 

  124. Cong W, Bai R, Li Y-F, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Interfaces. 2019;11(38):34725–35.

    Article  CAS  PubMed  Google Scholar 

  125. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet. 2006;15(18):2743–51.

    Article  CAS  PubMed  Google Scholar 

  126. Debnath K, Shekhar S, Kumar V, Jana NR, Jana NR. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces. 2016;8(31):20309–18.

    Article  CAS  PubMed  Google Scholar 

  127. Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol Med. 2015;7(12):1547–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Godinho BM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm. 2013;10(2):640–9.

    Article  CAS  PubMed  Google Scholar 

  129. Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, et al. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J Control Release. 2022;343:528–50.

    Article  CAS  PubMed  Google Scholar 

  130. Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Func Mater. 2020;30(35):2003054.

    Article  CAS  Google Scholar 

  131. Barton ME, Byrnes W, Mesa IR, Bloemers J, Maguire RP, Bouw R, et al. Design of a patient- and investigator-blind, randomized, placebo-controlled study to evaluate efficacy, safety, and tolerability of bepranemab, UCB0107, in prodromal to mild Alzheimer’s disease: the TOGETHER Study, AH0003. Alzheimers Dement. 2021;17(S9): e057586.

    Article  Google Scholar 

  132. Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev. 2016;103:202–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dara T, Vatanara A, Sharifzadeh M, Khani S, Vakilinezhad MA, Vakhshiteh F, et al. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles. Neurobiol Learn Mem. 2019;166: 107082.

    Article  PubMed  Google Scholar 

  134. Cai J, Dao P, Chen H, Yan L, Li YL, Zhang W, et al. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer’s disease. Dyes Pigm. 2020;173: 107968.

    Article  CAS  Google Scholar 

  135. Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega. 2019;4(7):12833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Burilova EA, Pashirova TN, Zueva IV, Gibadullina EM, Lushchekina SV, Sapunova AS, et al. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale. 2020;12(25):13757–70.

    Article  CAS  PubMed  Google Scholar 

  137. Sharma M, Tiwari V, Shukla S, Panda JJ. Fluorescent dopamine-tryptophan nanocomposites as dual-imaging and antiaggregation agents: new generation of amyloid theranostics with trimeric effects. ACS Appl Mater Interfaces. 2020;12(39):44180–94.

    Article  CAS  PubMed  Google Scholar 

  138. Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci. 2020;148: 105314.

    Article  CAS  PubMed  Google Scholar 

  139. Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, et al. RVG29-functionalized lipid nanoparticles for quercetin brain delivery and Alzheimer’s disease. Pharm Res. 2020;37(7):139.

    Article  CAS  PubMed  Google Scholar 

  140. Gao W, Wang W, Dong X, Sun Y. Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting Alzheimer’s β-amyloid plaques. Small. 2020;16(43): e2002804.

    Article  PubMed  Google Scholar 

  141. Mittapelly N, Thalla M, Pandey G, Banala VT, Sharma S, Arya A, et al. Long acting ionically paired embonate based nanocrystals of donepezil for the treatment of Alzheimer’s disease: a proof of concept study. Pharm Res. 2017;34(11):2322–35.

    Article  CAS  PubMed  Google Scholar 

  142. AnjiReddy K, Karpagam S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: in vitro and in vivo evaluation. Int J Biol Macromol. 2017;105(Pt 1):131–42.

    Article  CAS  PubMed  Google Scholar 

  143. Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–87.

    Article  PubMed  Google Scholar 

  144. Krishna KV, Wadhwa G, Alexander A, Kanojia N, Saha RN, Kukreti R, et al. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci. 2019;10(9):4124–35.

    Article  CAS  PubMed  Google Scholar 

  145. Pagar KP, Sardar SM, Vavia PR. Novel L-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer’s disease. J Biomed Nanotechnol. 2014;10(3):415–26.

    Article  CAS  PubMed  Google Scholar 

  146. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  147. Mohamadpour H, Azadi A, Rostamizadeh K, Andalib S, Saghatchi Zanjani MR, Hamidi M. Preparation, optimization, and evaluation of methoxy poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles loaded by rivastigmine for brain delivery. ACS Chem Neurosci. 2020;11(5):783–95.

    Article  CAS  PubMed  Google Scholar 

  148. Sunena, Singh SK, Mishra DN. Nose to Brain Delivery of galantamine loaded nanoparticles: in-vivo pharmacodynamic and biochemical study in mice. Curr Drug Deliver. 2019;16(1):51–8.

    Article  CAS  Google Scholar 

  149. Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M, et al. Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med. 2016;11(7):629–46.

    Article  CAS  PubMed  Google Scholar 

  150. Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliver. 2016;23(8):3111–22.

    Article  CAS  Google Scholar 

  151. Mittal G, Carswell H, Brett R, Currie S, Kumar MN. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release. 2011;150(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  152. Cao X, Hou D, Wang L, Li S, Sun S, Ping Q, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res. 2016;49(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Arisoy S, Sayiner O, Comoglu T, Onal D, Atalay O, Pehlivanoglu B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm Dev Technol. 2020;25(6):735–47.

    Article  CAS  PubMed  Google Scholar 

  154. Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater. 2020;109:220–8.

    Article  CAS  PubMed  Google Scholar 

  155. Yan X, Xu L, Bi C, Duan D, Chu L, Yu X, et al. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int J Nanomed. 2018;13:273–81.

    Article  CAS  Google Scholar 

  156. Bhattamisra SK, Shak AT, Xi LW, Safian NH, Choudhury H, Lim WM, et al. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int J Pharm. 2020;579: 119148.

    Article  CAS  PubMed  Google Scholar 

  157. Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomed Nanotechnol Biol Med. 2018;14(8):2609–18.

    Article  CAS  Google Scholar 

  158. Negro S, Boeva L, Slowing K, Fernandez-Carballido A, Garcia-García L, Barcia E. Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone- induced Parkinsonism. Curr Pharm Des. 2017;23(23):3423–31.

    Article  CAS  PubMed  Google Scholar 

  159. Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol. 2018;109:27–35.

    Article  CAS  PubMed  Google Scholar 

  160. Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  161. Renziehausen A, Tsiailanis AD, Perryman R, Stylos EK, Chatzigiannis C, O’Neill K, et al. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol Cancer Ther. 2019;18(9):1497–505.

    Article  CAS  PubMed  Google Scholar 

  162. Zhao M, Bozzato E, Joudiou N, Ghiassinejad S, Danhier F, Gallez B, et al. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J Control Release. 2019;309:72–81.

    Article  CAS  PubMed  Google Scholar 

  163. Malvindi MA, Di Corato R, Curcio A, Melisi D, Rimoli MG, Tortiglione C, et al. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. Nanoscale. 2011;3(12):5110–9.

    Article  CAS  PubMed  Google Scholar 

  164. Sharma S, Lohan S, Murthy RS. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm. 2014;40(7):869–78.

    Article  CAS  PubMed  Google Scholar 

  165. Ahmad MZ, Sabri AHB, Anjani QK, Domínguez-Robles J, Abdul Latip N, Hamid KA. Design and Development of Levodopa Loaded Polymeric Nanoparticles for Intranasal Delivery. Pharmaceuticals (Basel). 2022 Mar 18;15(3):370.  https://doi.org/10.3390/ph15030370.

  166. Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of Parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Leyva-Gómez G, Cortés H, Magaña JJ, Leyva-García N, Quintanar-Guerrero D, Florán B. Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discovery Today. 2015;20(7):824–37.

    Article  PubMed  Google Scholar 

  168. Ngwuluka NC, Pillay V, Choonara YE, Modi G, Naidoo D, du Toit LC, et al. Fabrication, modeling and characterization of multi-crosslinked methacrylate copolymeric nanoparticles for oral drug delivery. Int J Mol Sci. 2011;12(9):6194–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Esposito E, Mariani P, Ravani L, Contado C, Volta M, Bido S, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm. 2012;80(2):306–14.

    Article  CAS  PubMed  Google Scholar 

  170. Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011;100(2):547–57.

    Article  CAS  PubMed  Google Scholar 

  171. Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomed. 2012;7:1599–611.

    CAS  Google Scholar 

  172. Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: Apomorphine as a model drug. Nanotechnology. 2010;21(40): 405101.

    Article  PubMed  Google Scholar 

  173. Huang R, Han L, Li J, Ren F, Ke W, Jiang C, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med. 2009;11(9):754–63.

    Article  CAS  PubMed  Google Scholar 

  174. Martinez-Fong D, Bannon MJ, Trudeau LE, Gonzalez-Barrios JA, Arango-Rodriguez ML, Hernandez-Chan NG, et al. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine. 2012;8(7):1052–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thanh-Tam Ho, Toi Van Vo or Giau Van Vo.

Ethics declarations

Conflict of interests

Thuy Trang Nguyen, Phuong-Trang Nguyen-Thi, Thi Hong Anh Nguyen, Thanh Tam Ho, Nguyen-Minh-An Tran, Toi Van Vo, and Giau Van Vo declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Funding

This study is partially funded by the Vietnam National University Ho Chi Minh City (VNU-HCM) under grant/award number NCM2020-28-01 (to VVT).

Author Contributions

Thuy Trang Nguyen: conceptualization, data curation, methodology, writing—original draft preparation, and visualization; Phuong-Trang Nguyen-Thi, Thi Hong Anh Nguyen, Nguyen-Minh-An Tran: conceptualization, methodology, writing—reviewing; Toi Van Vo: conceptualization, methodology, supervision, and editing; Thanh-Tam Ho and Giau Van Vo: formal analysis, investigation, resources, data curation, writing of original draft, visualization, and writing of final paper.

Availability of data and materials

All data generated or analyzed during this study is available and can be provided if required.

Ethics approval

Not applicable

Consent (participate and publication)

Not applicable

Code availability

Not applicable

Additional information

The original article was revised as the Funding information was corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Nguyen-Thi, PT., Nguyen, T.H.A. et al. Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders. Mol Diagn Ther 27, 457–473 (2023). https://doi.org/10.1007/s40291-023-00654-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00654-1

Navigation