Skip to main content

Advertisement

Log in

A Review of CRISPR-Based Advances in Dermatological Diseases

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR) has revolutionized biomedical research by offering novel approaches to genetic and epigenetic manipulation. In dermatology, it has significantly promoted our understanding of complex diseases, and shown great potential in therapeutic applications. In this review, we introduce the adoption of CRISPR technology as a tool to study different types of skin disorders, including monogenic genodermatoses, inflammatory disorders, and cutaneous infections. We highlight the promising preclinical results of CRISPR-mediated treatment and important mechanic discoveries in investigative studies. Future opportunities and remaining challenges are also discussed. We predict that CRISPR will be more extensively used for dermatological research and even be accessible to patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feramisco JD, Sadreyev RI, Murray ML, Grishin NV, Tsao H. Phenotypic and genotypic analyses of genetic skin disease through the Online Mendelian Inheritance in Man (OMIM) database. J Investig Dermatol. 2009;129:2628–36.

    Article  CAS  PubMed  Google Scholar 

  2. Sebastiano V, Zhen HH, Haddad B, Derafshi BH, Bashkirova E, Melo SP, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2014;6: 264ra163.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slivka PF, Hsieh C-L, Lipovsky A, Pratt SD, Locklear J, Namovic MT, et al. Small molecule and pooled CRISPR screens investigating IL17 signaling identify BRD2 as a novel contributor to keratinocyte inflammatory responses. ACS Chem Biol. 2019;14:857–72.

    Article  CAS  PubMed  Google Scholar 

  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

    Article  CAS  PubMed  Google Scholar 

  5. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36:244–6.

    Article  CAS  PubMed  Google Scholar 

  6. Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384:252–60.

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26:732–40.

    Article  CAS  PubMed  Google Scholar 

  8. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39:9275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korablev A, Lukyanchikova V, Serova I, Battulin N. On-target CRISPR/Cas9 activity can cause undesigned large deletion in mouse zygotes. Int J Mol Sci. 2020;21:3604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells. 2020;9:1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alkan F, Wenzel A, Anthon C, Havgaard JH, Gorodkin J. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol. 2018;19:177.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weisheit I, Kroeger JA, Malik R, Klimmt J, Crusius D, Dannert A, et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 2020;31: 107689.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas M, Burgio G, Adams DJ, Iyer V. Collateral damage and CRISPR genome editing. PLoS Genet. 2019;15: e1007994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frock RL, Hu J, Meyers RM, Ho Y-J, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33:179–86.

    Article  CAS  PubMed  Google Scholar 

  18. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353:aaf5573.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bchetnia M, Dionne Gagné R, Powell J, Morin C, McCuaig C, Dupérée A, et al. Allele-specific inactivation of an autosomal dominant epidermolysis Bullosa simplex mutation using CRISPR-Cas9. CRISPR J. 2022;5:586–97.

    Article  CAS  PubMed  Google Scholar 

  26. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22:2227–35.

    Article  CAS  PubMed  Google Scholar 

  27. Duarte B, Miselli F, Murillas R, Espinosa-Hevia L, Cigudosa JC, Recchia A, et al. Long-term skin regeneration from a gene-targeted human epidermal stem cell clone. Mol Ther. 2014;22:1878–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eichstadt S, Barriga M, Ponakala A, Teng C, Nguyen NT, Siprashvili Z, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4: 130554.

    Article  PubMed  Google Scholar 

  29. Natsuga K, Shinkuma S, Nishie W, Shimizu H. Animal models of epidermolysis bullosa. Dermatol Clin. 2010;28:137–42.

    Article  CAS  PubMed  Google Scholar 

  30. So JY, Nazaroff J, Iwummadu CV, Harris N, Gorell ES, Fulchand S, et al. Long-term safety and efficacy of gene-corrected autologous keratinocyte grafts for recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis. 2022;17:377.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gurevich I, Agarwal P, Zhang P, Dolorito JA, Oliver S, Liu H, et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med. 2022;28:780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith BRC, Nyström A, Nowell CJ, Hausser I, Gretzmeier C, Robertson SJ, et al. Mouse models for dominant dystrophic epidermolysis bullosa carrying common human point mutations recapitulate the human disease. Dis Models Mech. 2021;14: dmm048082.

    Article  CAS  Google Scholar 

  33. Takaki S, Shimbo T, Ikegami K, Kitayama T, Yamamoto Y, Yamazaki S, et al. Generation of a recessive dystrophic epidermolysis bullosa mouse model with patient-derived compound heterozygous mutations. Lab Investig. 2022;102:574–80.

    Article  CAS  PubMed  Google Scholar 

  34. Webber BR, O’Connor KT, McElmurry RT, Durgin EN, Eide CR, Lees CJ, et al. Rapid generation of Col7a1-/- mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Investig. 2017;97:1218–24.

    Article  CAS  PubMed  Google Scholar 

  35. Wu W, Lu Z, Li F, Wang W, Qian N, Duan J, et al. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A. 2017;114:1660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Webber BR, Osborn MJ, McElroy AN, Twaroski K, Lonetree C-L, DeFeo AP, et al. CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regener Med. 2016;1:16014.

    Article  Google Scholar 

  37. Shinkuma S, Guo Z, Christiano AM. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci U S A. 2016;113:5676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonafont J, Mencía Á, García M, Torres R, Rodríguez S, Carretero M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing. Mol Ther. 2019;27:986–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonafont J, Mencía A, Chacón-Solano E, Srifa W, Vaidyanathan S, Romano R, et al. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol Ther. 2021;29:2008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hainzl S, Peking P, Kocher T, Murauer EM, Larcher F, Del Rio M, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther. 2017;25:2573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong S-A, Kim S-E, Lee A-Y, Hwang G-H, Kim JH, Iwata H, et al. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther. 2022;30:2664–79.

    Article  CAS  PubMed  Google Scholar 

  42. Jacków J, Guo Z, Hansen C, Abaci HE, Doucet YS, Shin JU, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci U S A. 2019;201907081.

  43. Takashima S, Shinkuma S, Fujita Y, Nomura T, Ujiie H, Natsuga K, et al. Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa with CRISPR/Cas9. J Investig Dermatol. 2019;139:1711-1721.e4.

    Article  CAS  PubMed  Google Scholar 

  44. Osborn MJ, Newby GA, McElroy AN, Knipping F, Nielsen SC, Riddle MJ, et al. Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J Investig Dermatol. 2020;140:338-347.e5.

    Article  CAS  PubMed  Google Scholar 

  45. Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci. 2020;98:163–72.

    Article  CAS  PubMed  Google Scholar 

  46. Kocher T, March OP, Bischof J, Liemberger B, Hainzl S, Klausegger A, et al. Predictable CRISPR/Cas9-mediated COL7A1 reframing for dystrophic epidermolysis bullosa. J Investig Dermatol. 2020;140:1985-1993.e5.

    Article  CAS  PubMed  Google Scholar 

  47. García M, Bonafont J, Martínez-Palacios J, Xu R, Turchiano G, Svensson S, et al. Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors. Mol Ther Methods Clin Dev. 2022;27:96–108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25:249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thompson EL, Pickett-Leonard M, Riddle MJ, Chen W, Albert FW, Tolar J. Genes and compounds that increase type VII collagen expression as potential treatments for dystrophic epidermolysis bullosa. Exp Dermatol. 2022;31:1065–75.

    Article  CAS  PubMed  Google Scholar 

  50. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med. 2010;363:629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Osborn MJ, Lees CJ, McElroy AN, Merkel SC, Eide CR, Mathews W, et al. CRISPR/Cas9-based cellular engineering for targeted gene overexpression. Int J Mol Sci. 2018;19:E946.

    Article  Google Scholar 

  52. Bchetnia M, Martineau L, Racine V, Powell J, McCuaig C, Puymirat J, et al. Generation of a human induced pluripotent stem cell line (UQACi001-A) from a severe epidermolysis bullosa simplex patient with the heterozygous mutation p.R125S in the KRT14 gene. Stem Cell Res. 2020;44: 101748.

    Article  CAS  PubMed  Google Scholar 

  53. Ramovs V, Fuentes I, Freund C, Mikkers H, Mummery CL, Raymond K. Generation and genetic repair of two human induced pluripotent cell lines from patients with Epidermolysis Bullosa simplex and dilated cardiomyopathy associated with a heterozygous mutation in the translation initiation codon of KLHL24. Stem Cell Res. 2021;57: 102582.

    Article  CAS  PubMed  Google Scholar 

  54. Benati D, Miselli F, Cocchiarella F, Patrizi C, Carretero M, Baldassarri S, et al. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient. Mol Ther. 2018;26:2592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bischof J, March OP, Liemberger B, Haas SA, Hainzl S, Petković I, et al. Paired nicking-mediated COL17A1 reframing for junctional epidermolysis bullosa. Mol Ther. 2022;30:2680–92.

    Article  CAS  PubMed  Google Scholar 

  56. Kocher T, Peking P, Klausegger A, Murauer EM, Hofbauer JP, Wally V, et al. Cut and paste: efficient homology-directed repair of a dominant negative krt14 mutation via CRISPR/Cas9 nickases. Mol Ther. 2017;25:2585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551:327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, et al. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Investig. 2020;130:4798–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gálvez V, Chacón-Solano E, Bonafont J, Mencía Á, Di W-L, Murillas R, et al. Efficient CRISPR-Cas9-mediated gene ablation in human keratinocytes to recapitulate genodermatoses: modeling of Netherton Syndrome. Mol Ther Methods Clin Dev. 2020;18:280–90.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun. 2017;8:15382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swindell WR, Beamer MA, Sarkar MK, Loftus S, Fullmer J, Xing X, et al. RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol. 2018;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight. 2019;4: 129756.

    Article  PubMed  Google Scholar 

  63. Zhou B, Yang W, Li W, He L, Lu L, Zhang L, et al. Zdhhc2 is essential for plasmacytoid dendritic cells mediated inflammatory response in psoriasis. Front Immunol. 2020;11: 607442.

    Article  CAS  PubMed  Google Scholar 

  64. Granata M, Skarmoutsou E, Gangemi P, Mazzarino MC, D’Amico F. S100A7, Jab1, and p27kip1 expression in psoriasis and S100A7 CRISPR-activated human keratinocyte cell line. J Cell Biochem. 2019;120:3384–92.

    Article  CAS  PubMed  Google Scholar 

  65. Roth-Carter QR, Godsel L, Koetsier JL, Broussard JA, Burks HE, Fitz G, et al. 225 Desmoglein 1 deficiency in knockout mice impairs epidermal barrier formation and results in a psoriasis-like gene signature in E18.5 embryos. J Investig Dermatol. 2020;140:S26.

    Article  Google Scholar 

  66. Ray-Jones H, Duffus K, McGovern A, Martin P, Shi C, Hankinson J, et al. Mapping DNA interaction landscapes in psoriasis susceptibility loci highlights KLF4 as a target gene in 9q31. BMC Biol. 2020;18:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.

    Article  CAS  PubMed  Google Scholar 

  68. Sahlén P, Spalinskas R, Asad S, Mahapatra KD, Höjer P, Anil A, et al. Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis- and psoriasis-associated genes. J Allergy Clin Immunol. 2021;147:1742–52.

    Article  PubMed  Google Scholar 

  69. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ford K, McDonald D, Mali P. Functional genomics via CRISPR-Cas. J Mol Biol. 2019;431:48–65.

    Article  CAS  PubMed  Google Scholar 

  71. Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, et al. Genome editing of human primary keratinocytes by CRISPR/Cas9 reveals an essential role of the NLRP1 inflammasome in UVB sensing. J Investig Dermatol. 2018;138:2644–52.

    Article  CAS  PubMed  Google Scholar 

  72. Chow RD, Chen S. Cancer CRISPR screens in vivo. Trends Cancer. 2018;4:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciążyńska M, Olejniczak-Staruch I, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. The role of NLRP1, NLRP3, and AIM2 inflammasomes in psoriasis: review. Int J Mol Sci. 2021;22:5898.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7:eabe2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sarkar MK, Hile GA, Tsoi LC, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77:1653–64.

    Article  CAS  PubMed  Google Scholar 

  76. Odqvist L, Jevnikar Z, Riise R, Öberg L, Rhedin M, Leonard D, et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019;78:1363–70.

    Article  CAS  PubMed  Google Scholar 

  77. Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB, et al. Characterization of cxorf21 provides molecular insight into female-bias immune response in SLE pathogenesis. Front Immunol. 2019;10:2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xue Z, Cui C, Liao Z, Xia S, Zhang P, Qin J, et al. Identification of LncRNA Linc00513 containing lupus-associated genetic variants as a novel regulator of interferon signaling pathway. Front Immunol. 2018;9:2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, et al. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun. 2021;12:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell. 2021;184:1790-1803.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moffarah AS, Al Mohajer M, Hurwitz BL, Armstrong DG. Skin and soft tissue infections. Microbiol Spectr. 2016;4.

  82. Lipsky BA, Moran GJ, Napolitano LM, Vo L, Nicholson S, Kim M. A prospective, multicenter, observational study of complicated skin and soft tissue infections in hospitalized patients: clinical characteristics, medical treatment, and outcomes. BMC Infect Dis. 2012;12:227.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnol. 2021;19:401.

    Article  Google Scholar 

  84. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28:957–67.

    Article  CAS  PubMed  Google Scholar 

  86. Wu X, Zha J, Koffas MAG, Dordick JS. Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9. Biotechnol Bioeng. 2019;116:3149–59.

    Article  CAS  PubMed  Google Scholar 

  87. Muñoz N, Kjaer SK, Sigurdsson K, Iversen O-E, Hernandez-Avila M, Wheeler CM, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst. 2010;102:325–39.

    Article  PubMed  Google Scholar 

  88. Liu Y-C, Cai Z-M, Zhang X-J. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl. 2016;18:475–9.

    Article  CAS  PubMed  Google Scholar 

  89. Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8.

    Article  CAS  PubMed  Google Scholar 

  90. Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, et al. Inhibition of HSV-1 replication by gene editing strategy. Sci Rep. 2016;6:23146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhong Jin.

Ethics declarations

Funding

Funding was received from National High Level Hospital Clinical Research Funding (2022-PUMCH-B-092), National Key R&D Program of China (2022YFC3601800), CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-059) and National Natural Science Foundation of China (82073450).

Conflict of interest

The authors declare no conflicts of interest.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

The idea for the article originated from HJ. The literature search and data analysis were performed by XL. The manuscript was drafted by XL and was revised by HJ. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jin, H. A Review of CRISPR-Based Advances in Dermatological Diseases. Mol Diagn Ther 27, 445–456 (2023). https://doi.org/10.1007/s40291-023-00642-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00642-5

Navigation